Robert O. J. Weinzierl

Learn More
The general transcription factor TFIID is a multiprotein complex containing the TATA-binding protein and several associated factors (TAFs), some of which may function as coactivators that are essential for activated, but not basal, transcription. Here we describe the isolation and characterization of the first gene encoding a TAF protein. The deduced amino(More)
A key component of the RNA polymerase II transcriptional apparatus, TFIID, is a multi-protein complex containing the TATA box-binding protein (TBP) and at least seven tightly associated factors (TAFs). Although the functions of most TFIID subunits are unknown, it is clear that TAFs are not necessary for basal activity but that one or more are required for(More)
The TFIID complex consists of the TATA-binding protein (TBP) and associated factors (TAFs) serving to mediate transcriptional activation by promoter-specific regulators. Here we report the cloning of Drosophila TAFII250 and the assembly of a partial complex containing recombinant TBP, TAFII110 and the C-terminal domain of TAFII250. This triple complex(More)
BACKGROUND Cellular RNA polymerases (RNAPs) are complex molecular machines that combine catalysis with concerted conformational changes in the active center. Previous work showed that kinking of a hinge region near the C-terminus of the Bridge Helix (BH-H(C)) plays a critical role in controlling the catalytic rate. RESULTS Here, new evidence for the(More)
BACKGROUND Cellular RNA polymerases are highly conserved enzymes that undergo complex conformational changes to coordinate the processing of nucleic acid substrates through the active site. Two domains in particular, the bridge helix and the trigger loop, play a key role in this mechanism by adopting different conformations at various stages of the(More)
The in-depth structure/function analysis of large protein complexes, such as RNA polymerases (RNAPs), requires an experimental platform capable of assembling variants of such enzymes in large numbers in a reproducible manner under defined in vitro conditions. Here we describe a streamlined and integrated protocol for assembling recombinant archaeal RNAPs in(More)
Archaeal RNA polymerases (RNAPs) resemble the eukaryotic nuclear RNAPs in complexity, and many of their subunits display a high degree of sequence similarity to their eukaryotic counterparts. Here we describe specific protein-protein contacts present between individual recombinant RNAP subunits from the archaeon Methanococcus jannaschii. Subunits D and L(More)
The availability of in vitro assembly systems to produce recombinant archaeal RNA polymerases (RNAPs) offers one of the most powerful experimental tools for investigating the still relatively poorly understood molecular mechanisms underlying RNAP function. Over the last few years, we pioneered new robot-based high-throughput mutagenesis approaches to study(More)
  • 1