Learn More
The pyruvate kinase isoforms PKM1 and PKM2 are alternatively spliced products of the PKM2 gene. PKM2, but not PKM1, alters glucose metabolism in cancer cells and contributes to tumorigenesis by mechanisms that are not explained by its known biochemical activity. We show that PKM2 gene transcription is activated by hypoxia-inducible factor 1 (HIF-1). PKM2(More)
Acetyl-coenzyme A (CoA) synthetase (Acs) is an enzyme central to metabolism in prokaryotes and eukaryotes. Acs synthesizes acetyl CoA from acetate, adenosine triphosphate, and CoA through an acetyl-adenosine monophosphate (AMP) intermediate. Immunoblotting and mass spectrometry analysis showed that Salmonella enterica Acs enzyme activity is(More)
From early development through adulthood in the leech, sensory afferents, glial cells, and connective tissue express different epitopes located on a group of 130-kDa glycoproteins. The sensory epitope [reactive with monoclonal antibody (mAb) Lan3-2] is shared by the peripheral sensory afferents of different sensory modalities. In contrast, three other(More)
O-linked N-acetylglucosamine (O-GlcNAc) is a ubiquitous nucleocytoplasmic protein modification that has a complex interplay with phosphorylation on cytoskeletal proteins, signaling proteins and transcription factors. O-GlcNAc is essential for life at the single cell level, and much indirect evidence suggests it plays an important role in nerve cell biology(More)
Phosphorylation has been shown to have a significant impact on expanded huntingtin-mediated cellular toxicity. Several phosphorylation sites have been identified on the huntingtin (Htt) protein. To find new potential therapeutic targets for Huntington's Disease (HD), we used mass spectrometry to identify novel phosphorylation sites on N-terminal Htt,(More)
Glial processes, bearing a unique 130 kD surface protein, are located at key sites of morphogenic movement and neuronal differentiation in the leech germinal plate. A midline glial fascicle resides at the primary axis of embryonic symmetry, alongside which teloblasts move as they generate their bandlets of stem cells. The n-bandlets straddle the midline(More)
Alzheimer's disease (AD) is characterized by progressive cognitive impairment associated with accumulation of amyloid beta-peptide, synaptic degeneration and the death of neurons in the hippocampus, and temporal, parietal and frontal lobes of the cerebral cortex. Analysis of postmortem brain tissue from AD patients can provide information on molecular(More)
Phosphorylation plays a key role in regulating growth cone migration and protein trafficking in nerve terminals. Here we show that nerve terminal proteins contain another abundant post-translational modification: beta-N-acetylglucosamine linked to hydroxyls of serines or threonines (O-GlcNAc(1)). O-GlcNAc modifications are essential for embryogenesis and(More)
Carbohydrate recognition plays an important role in the development of normal projections of sensory afferent neurons in the leech CNS. Four different carbohydrate epitopes are expressed by sensory afferents on their 130 kDa surface proteins: all sensory afferents share a common carbohydrate epitope (CE0) that helps them to enter and project diffusely(More)
Huntington disease (HD) is a neurodegenerative disorder caused by an expansion of a polyglutamine repeat within the HD gene product, huntingtin. Huntingtin, a large (347 kDa) protein containing multiple HEAT repeats, acts as a scaffold for protein-protein interactions. Huntingtin-induced toxicity is believed to be mediated by a conformational change in(More)