Robert N. Ben

Learn More
A synthetic methodology to afford unusual glycoconjugate building blocks useful for the solid-phase synthesis of C-linked antifreeze glycoprotein (AFGP) analogues is described. Such compounds are urgently required in order to elucidate the molecular mechanism by which AFGPs function. All reactions are general in nature and accommodate structural variation(More)
Antifreeze glycoproteins (AFGPs) are a unique class of proteins that are found in many organisms inhabiting subzero environments and ensure their survival by preventing ice growth in vivo. During the last several years, our laboratory has synthesized functional C-linked AFGP analogues (3 and 5) that possess custom-tailored antifreeze activity suitable for(More)
Part A I. Synthesis of C-Linked Antifreeze Glycoprotein Analogues (1-4) (i) General Experimental..................................... S2 (ii) Synthesis of Carbohydrate Component................. S3 (iii) Synthesis of C-linked Glycoconjugate.................. S11 (iv) Solid Phase Synthesis of C-Linked Glycopeptides... S17 II. Assessing Antifreeze(More)
Significant cell damage occurs during cryopreservation resulting in a decreased number of viable and functional cells post-thawing. Recent studies have correlated the unsuccessful outcome of regenerative therapies with poor cell viability after cryopreservation. Cell damage from ice recrystallization during freeze-thawing is one cause of decreased viability(More)
Several simple mono- and disaccharides have been assessed for their ability to inhibit ice recrystallization. Two carbohydrates were found to be effective recrystallization inhibitors. D-galactose (1) was the best monosaccharide and D-melibiose (5) was the most active disaccharide. The ability of each carbohydrate to inhibit ice growth was correlated to its(More)
Antifreeze glycoproteins (AFGPs) are a novel class of biologically significant compounds that possess the ability to inhibit the growth of ice both in vitro and in vivo. Any organic compound that possesses the ability to inhibit the growth of ice has many potential medical, industrial, and commercial applications. In an effort to elucidate the molecular(More)
[reaction: see text] A series of C-linked antifreeze glycoprotein analogues have been prepared to evaluate antifreeze activity as a function of distance between the carbohydrate moiety and polypeptide backbone. The building blocks for these analogues were prepared using either an olefin cross-metathesis or catalytic asymmetric hydrogenation. Analysis of(More)
C-Linked antifreeze glycoprotein (C-AFGP) analogues have been shown to have potent ice recrystallization inhibition (IRI) activity. However, the lengthy synthesis of these compounds is not amenable to large-scale preparation for the many commercial, industrial, and medical applications that exist. This paper describes the synthesis of triazole-containing(More)