Robert Monette

Learn More
The objective of this study was to generate an immortal cell line representative of specialized human brain microvascular endothelia forming the blood-brain barrier (BBB) in vivo. Human capillary and microvascular endothelial cells (HCEC) were transfected with the plasmid pSV3-neo coding for the SV40 large T antigen and the neomycin gene. The(More)
Although organotypic hippocampal slice cultures (OHSCs) are used to study function within the hippocampus, the effect of maintenance in vitro upon protein expression is not fully understood. Therefore, we examined developmental changes in cultures prepared from P8 rats and maintained on porous membranes between medium and atmosphere. Between 7 and 28 days(More)
Cell-attached and inside-out patch-clamp experiments (O.P. Hamill et al.,Pfluegers Arch. 391: 85–100, 1981) were undertaken in order to characterize the molecular mechanisms responsible for the calcium-dependent potassium permeability observed in HeLa cancer cells. Our result essentially indicate that the HeLa cell external membrane contains potassium(More)
Leukocyte infiltration into the brain has been implicated in the development of ischemic brain damage. In this study, simulated in vitro ischemia/reperfusion and IL-1beta were found to up-regulate both the expression of intercellular adhesion molecule- (ICAM-1) in cultured human cerebromicrovascular endothelial cells (HCEC) and the adhesion of allogenic(More)
Although glutamate excitotoxicity has long been implicated in neuronal cell death associated with a variety of neurological disorders, the molecular mechanisms underlying this process are not yet fully understood. In part, this is due to the lack of relevant experimental cell systems recapitulating the in vivo neuronal environment, mainly neuronal-glial(More)
The presynaptic Ca2+-influx affecting glutamate release during neuropathological processes is mediated via voltage-sensitive calcium channels (VSCCs). There is controversy, however, over the fractional contribution of the specific channel types involved. We have addressed this by investigating the protective effects of various VSCC blockers on oxygen and(More)
All excitable cell functions rely upon ion channels that are embedded in their plasma membrane. Perturbations of ion channel structure or function result in pathologies ranging from cardiac dysfunction to neurodegenerative disorders. Consequently, to understand the functions of excitable cells and to remedy their pathophysiology, it is important to(More)
Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP) and long-term depression (LTD). Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine(More)
Cobra cardiotoxins (CTXs) are basic polypeptides with diverse pharmacological functions that are cytotoxic to many different cell types through both necrotic and apoptotic cell death pathways. In this comparative study of the action of CTX A3 from the Taiwan cobra (Naja atra) on fetal rat cardiomyocytes and cortical neurons, it was shown that CTX A3 induced(More)
Semaphorin 3A (Sema3A) increased significantly in mouse brain following cerebral ischemia. However, the role of Sema3A in stroke brain remains unknown. Our aim was to determine wether Sema3A functions as a vascular permeability factor and contributes to ischemic brain damage. Recombinant Sema3A injected intradermally to mouse skin, or stereotactically into(More)