Learn More
We propose an algorithm that given as input a full word w of length n, and positive integers p and d, outputs (if any exists) a maximal p-periodic partial word contained in w with the property that no two holes are within distance d. Our algorithm runs in O(nd) time and is used for the study of freeness of partial words. Furthermore, we construct an(More)
Pseudo-repetitions are a natural generalization of the classical notion of repetitions in sequences. We solve fundamental algorithmic questions on pseudo-repetitions by application of insightful combinatorial results on words. More precisely, we efficiently decide whether a word is a pseudo-repetition and find all the pseudo-repetitive factors of a word. 1(More)
A well known result of Fraenkel and Simpson states that the number of distinct squares in a word of length n is bounded by 2n since at each position there are at most two distinct squares whose last occurrence start. In this paper, we investigate the problem of counting distinct squares in partial words, or sequences over a finite alphabet that may have(More)
Erdös raised the question whether there exist infinite abelian square-free words over a given alphabet (words in which no two adjacent subwords are permutations of each other). Infinite abelian square-free words have been constructed over alphabets of sizes as small as four. In this paper, we investigate the problem of avoiding abelian squares in partial(More)
The problem of classifying all the avoidable binary patterns in (full) words has been completely solved (see Chapter 3 of M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, 2002). In this paper, we classify all the avoidable binary patterns in partial words, or sequences that may have some undefined positions called holes. In(More)
Erdös raised the question whether there exist infinite abelian square-free words over a given alphabet, that is, words in which no two adjacent subwords are permutations of each other. It can easily be checked that no such word exists over a three-letter alphabet. However, infinite abelian square-free words have been constructed over alphabets of sizes as(More)
A pattern (i. e., a string of variables and terminals) maps to a word, if this is obtained by uniformly replacing the variables by terminal words; deciding this is N P-complete. We present efficient algorithms 1 that solve this problem for restricted classes of patterns. Furthermore, we show that it is N P-complete to decide, for a given number k and a word(More)