Robert Magnusson

Learn More
In this paper, we describe guided-mode resonance biochemical sensor technology. We briefly discuss sensor fabrication and show measured binding dynamics for example biomaterials in use in our laboratories. We then turn our attention to a particularly powerful attribute of this technology not possessed by competing methods. This attribute is the facile(More)
— By applying formulation based on time reversibility, we provide the analytic theory of resonance properties of metallic nanoslit arrays. We model lossy resonant systems in which a resonance is induced by a single quasi-bound mode (QBM). It is consistent with the Fano resonance theory of quantum interference of auto-ionizing atoms and captures the(More)
Employing numerical simulations, we investigate the possibility of using curved guided-mode resonance (GMR) elements to focus light in reflection. We treat GMR reflectors with a parabolic shape and show that they are capable of focusing light effectively across wavelength bands that extend several hundred nanometers. The spatially infinite reflector model(More)
Metallic nanostructures are of immense scientific interest owing to unexpectedly strong interaction with light in deep subwavelength scales. Resonant excitations of surface and cavity plasmonic modes mediate strong light localization in nanoscale objects. Nevertheless, the role of surface plasmon-polaritons (SPP) in light transmission through a simple(More)
We demonstrate the plasmonic analogue of a coherent photonic effect known as coherent perfect absorption. A periodically nanopatterned metal film perfectly absorbs multiple coherent light beams coupling to a single surface plasmon mode. The perfect absorbing state can be switched to a nearly perfect scattering state by tuning the phase difference between(More)
We propose a mechanism of ultrahigh-Q metallic nanocavity resonances that involves an efficient loss-compensation scheme favorable for room-temperature operation. We theoretically show that surface plasmon-polaritons excited on the entrance and exit interfaces of a metallic nanocavity array efficiently transfer external optical gain to the cavity modes by(More)
We study spectral singularities and critical field enhancement factors associated with embedded photonic bound states in subwavelength periodic Si films. Ultrahigh-Q resonances supporting field enhancement factor exceeding 10(8) are obtained in the spectral vicinity of exact embedded eigenvalues in spite of deep surface modulation and vertical asymmetry of(More)
According to the American Cancer Society, more than 200,000 women will be diagnosed with invasive breast cancer each year and approximately 40,000 will die from the disease. The human leukocyte antigen (HLA) class I samples peptides derived from proteasomal degradation of cellular proteins and presents these fragments on the cell surface for interrogation(More)
  • 1