Learn More
Atmospheric chloromethane (CH3Cl) plays an important role in stratospheric ozone destruction, but many uncertainties exist regarding the strengths of its sources and sinks and particularly regarding the processes generating this naturally occurring gas. Evidence is presented here that CH3Cl is produced in many terrestrial environments by a common mechanism.(More)
We report that the most abundant C 1 units of terrestrial plants, the methoxyl groups of pectin and lignin, have a unique carbon isotope signature exceptionally depleted in 13 C. Plant-derived C 1 volatile organic compounds (VOCs) are also anomalously depleted in 13 C compared with C n+1 VOCs. The results confirm that the plant methoxyl pool is the(More)
The largest biological fractionations of stable carbon isotopes observed in nature occur during production of methane by methanogenic archaea. These fractionations result in substantial (as much as approximately 70 per thousand) shifts in delta(13)C relative to the initial substrate. We now report that a stable carbon isotopic fractionation of comparable(More)
Prokaryotes represent one-half of the living biomass on Earth, with the vast majority remaining elusive to culture and study within the laboratory. As a result, we lack a basic understanding of the functions that many species perform in the natural world. To address this issue, we developed complementary population and single-cell stable isotope(More)
The strain Burkholderia cepacia G4 aerobically mineralized trichloroethene (TCE) to CO(2) over a time period of approximately 20 h. Three biodegradation experiments were conducted with different bacterial optical densities at 540 nm (OD(540)s) in order to test whether isotope fractionation was consistent. The resulting TCE degradation was 93, 83.8, and(More)
Chloromethane (CH3Cl) with a global atmospheric burden of 5.3 million t is the most abundant halocarbon in the atmosphere. However, the origin of ca. 50% of the estimated annual global input of 4 million t of the gas to the atmosphere has yet to be determined. As the oceanic contribution to the global CH3Cl flux is now tightly constrained, an important(More)
Permeable reactive barriers are a technology that is one decade old, with most full-scale applications based on abiotic mechanisms. Though there is extensive literature on engineered bioreactors, natural biodegradation potential, and in situ remediation, it is only recently that engineered passive bioreactive barrier technology is being considered at the(More)
AIMS To investigate the distribution of a polymicrobial community of biodegradative bacteria in (i) soil and groundwater at a former manufactured gas plant (FMGP) site and (ii) in a novel SEquential REactive BARrier (SEREBAR) bioremediation process designed to bioremediate the contaminated groundwater. METHODS AND RESULTS Culture-dependent and(More)
The Monkstown zero-valent iron permeable reactive barrier (ZVI PRB), Europe's oldest commercially-installed ZVI PRB, had been treating trichloroethene (TCE) contaminated groundwater for about 10 years on the Nortel Network site in Northern Ireland when cores from the reactive zone were collected in December, 2006. Groundwater data from 2001-2006 indicated(More)
Copper mining contributes to increased concentrations of metals in the environment, thereby increasing the risk of metals exposure to populations living in and around mining areas. This study investigated environmental and toenail metals concentrations of non-occupational human exposure to metals in 39 copper-mining town residents and 47 non-mining town(More)