Learn More
Exacerbation of hypoxic injury after restoration of oxygenation (reoxygenation) is an important mechanism of cellular injury in transplantation and in myocardial, hepatic, intestinal, cerebral, renal, and other ischemic syndromes. Cellular hypoxia and reoxygenation are two essential elements of ischemia-reperfusion injury. Activated neutrophils contribute(More)
Both NADH dehydrogenase (complex I) and aconitase are inactivated partially in vitro by superoxide (O2-.) and other oxidants that cause loss of iron from enzyme cubane (4Fe-4S) centers. We tested whether hypoxia-reoxygenation (H-R) by itself would decrease lung epithelial cell NADH dehydrogenase, aconitase, and succinate dehydrogenase (SDH) activities and(More)
Nitrotyrosine (NO(2)Tyr) formation is a hallmark of acute and chronic inflammation and has been detected in a wide variety of human pathologies. However, the mechanisms responsible for this posttranslational protein modification remain elusive. While NO(2)Tyr has been considered a marker of peroxynitrite (ONOO(-)) formation previously, there is growing(More)
The recent immunopurification and cloning of various lung Na+ channel proteins has provided the necessary tools to study Na+ transport at a fundamental level across a number of epithelial tissues. Various macroscopic measurements of Na+ transport have shown that Na+ ions enter the cytoplasm of alveolar cells mainly through amiloride-inhibitable Na+(More)
Preadaptation of adult rats to hypoxia (10% O2 for 5 days) results in tolerance to oxygen-induced lung injury (greater than 95% O2 for 2 days). This study investigated whether hypoxia preadaptation maintained an endothelial cell metabolic function, angiotensin-converting enzyme (ACE) activity, despite exposure to hyperoxia. Lung ACE activity was measured as(More)
INTRODUCTION Pulmonary rehabilitation is effective for patients with COPD, but its benefit is less clearly established in idiopathic pulmonary fibrosis (IPF), especially in regard to levels of physical activity and health-related quality of life. The objectives were to determine whether pulmonary rehabilitation increased physical activity as assessed by the(More)
Patients with idiopathic pulmonary fibrosis (IPF) have severely limited exercise capacity due to dyspnea, hypoxemia, and abnormal lung mechanics. This pilot study was designed to determine whether pulmonary rehabilitation were efficacious in improving the 6-min walk test (6-MWT) distance, exercise oxygen uptake, respiratory muscle strength [maximum(More)
Re-expansion pulmonary edema (RPE) has been attributed to decreased lung interstitial pressures from a variety of mechanisms. Because some recent studies have implicated mechanisms that increase microvascular permeability in RPE, we tested whether the edema were due to free radical generation during re-expansion and reoxygenation of the collapsed lung. We(More)
Ischemia/reperfusion mechanisms contribute to lung injury after transplantation, pulmonary embolism, and resolution of atelectasis. Alveolar tissue becomes hypoxic and deprived of substrate only when both ventilation and perfusion are interrupted, a situation modeled in vivo by complete, unilateral lung collapse. Because previously hypoxic mitochondria may(More)