Robert M. Erskine

Learn More
To obtain a better understanding of the adaptations of human tendon to chronic overloading, we examined the relationships between these adaptations and the changes in muscle structure and function. Fifteen healthy male subjects (20+/-2 yr) underwent 9 wk of knee extension resistance training. Patellar tendon stiffness and modulus were assessed with(More)
It is not known to what extent the inter-individual variation in human muscle strength is explicable by differences in specific tension. To investigate this, a comprehensive approach was used to determine in vivo specific tension of the quadriceps femoris (QF) muscle (Method 1). Since this is a protracted technique, a simpler procedure was also developed to(More)
AIM The present study investigated whether in vivo human quadriceps femoris (QF) muscle specific tension changed following strength training by systematically determining QF maximal force and physiological cross-sectional area (PCSA). METHODS Seventeen untrained men (20 +/- 2 years) performed high-intensity leg-extension training three times a week for 9(More)
Considerable variation exists between people in the muscle response to resistance training, but there are numerous ways muscle might adapt to overload that might explain this variable response. Therefore, the aim of this study was to quantify the range of responses concerning the training-induced change in maximum voluntary contraction (MVC) knee joint(More)
Whilst skeletal muscle hypertrophy is considered an important adaptation to resistance training (RT), it has not previously been found to explain the inter-individual changes in strength after RT. This study investigated the contribution of hypertrophy to individual gains in isometric, isoinertial and explosive strength after 12 weeks of elbow flexor RT.(More)
Obesity has previously been associated with greater muscle strength. Aging, on the other hand, reduces muscle specific force (the force per unit physiological cross-sectional area [PCSA] of muscle). However, neither the effect of obesity on skeletal muscle specific force nor the combined effects of aging and obesity on this parameter are known. This study(More)
Accurate assessment of muscle-tendon forces in vivo requires knowledge of the muscle-tendon moment arm. Dual-energy X-ray absorptiometry (DXA) can produce 2D images suitable for visualising both tendon and bone, thereby potentially allowing the moment arm to be measured but there is currently no validated DXA method for this purpose. The aims of this study(More)
Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation–contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount(More)
Alternative measures of muscle size, strength, and power to those used in previous studies could help resolve the controversy surrounding associations between polymorphisms of the angiotensin-I converting enzyme (ACE) and α-actinin-3 (ACTN3) genes and skeletal muscle phenotypes, and the responses to resistance training (RT). To this end, we measured(More)
This study aimed to delineate the contribution of adaptations in agonist, antagonist, and stabilizer muscle activation to changes in isometric and isoinertial lifting strength after short-term isoinertial resistance training (RT). Following familiarization, 45 men (23.2 ± 2.8 years) performed maximal isometric and isoinertial strength tests of the elbow(More)