Learn More
Parkinson's disease represents a chronic movement disorder, which is generally proportionally to age. The status of Parkinson's disease is traditionally classified through ordinal scale strategies, such as the Unified Parkinson's Disease Rating Scale. However, the application of the ordinal scale strategy inherently requires highly specialized and limited(More)
The synergy of gait analysis tools with machine learning enables the capacity to classify disparity existing in hemiplegic gait. Hemiplegic gait is characterized by an affected leg and unaffected leg, which can be quantified by the measurement of a force plate. The characteristic features of the force plate recording for gait consist of a two local maxima(More)
Virtual proprioception is a novel device for providing near autonomous biofeedback of hemiparetic gait disparity in real time. With virtual proprioception a user may modify gait dynamics to develop a more suitable gait in tandem with real time feedback. Accelerometers are fundamental to the operation of the device, and a thorough consideration of the(More)
The characteristics of the patellar tendon reflex provide fundamental insight regarding the diagnosis of neurological status. Based on the features of the tendon reflex response, a clinician may establish preliminary perspective regarding the global condition of the nervous system. Current techniques for quantifying the observations of the reflex response(More)
With the prevalence of traumatic brain injury and associated motor function impairment, an advance in the capacity to measure the efficacy of a rehabilitation strategy is a topic of considerable interest. For example, the development of a rehabilitation system that can quantify the efficacy to an ankle dorsiflexion therapy prescription would be beneficial.(More)
Current forecasts imply a significant increase in the quantity of lower limb amputations. Synergizing the capabilities of a conventional gait analysis system and machine learning facilitates the capacity to classify disparate types of transtibial prostheses. Automated classification of prosthesis type may eventually advance rehabilitative acuity for(More)
The amalgamation of conventional gait analysis devices, such as a force plate, with a machine learning platform facilitates the capability to classify between two disparate software platforms for the same bionic powered prosthesis. The BiOM powered prosthesis is applied with its standard software platform that incorporates a finite state machine control(More)
Essential tremor (ET) is a highly prevalent movement disorder. Patients with ET exhibit a complex progressive and disabling tremor, and medical management often fails. Deep brain stimulation (DBS) has been successfully applied to this disorder, however there has been no quantifiable way to measure tremor severity or treatment efficacy in this patient(More)
Parkinson's disease is a growing medical concern as societies, such as the United States of America, become progressively aged. Therapy strategies exist for the amelioration of Parkin-son's disease symptoms, and the quantification of attributes, such as hand tremor, can provide valuable feedback. Wearable and wireless ac-celerometer systems for monitoring(More)
The evaluation of the deep tendon reflex is a standard aspect of a neurological evaluation, which is frequently evoked through the patellar tendon reflex. Important features of the reflex are response and latency, providing insight to status for peripheral neuropathy and upper motor neuron syndrome. A wireless accelerometer reflex quantification system has(More)