Learn More
The ability to respond to light is crucial for most organisms. BLUF is a recently identified photoreceptor protein domain that senses blue light using a FAD chromophore. BLUF domains are present in various proteins from the Bacteria, Euglenozoa and Fungi. Although structures of single-domain BLUF proteins have been determined, none are available for a BLUF(More)
Light is an essential environmental factor, and many species have evolved the capability to respond to it. Blue light is perceived through three flavin-containing photoreceptor families: cryptochromes, light-oxygen-voltage, and BLUF (sensor of blue light using flavin adenine dinucleotide, FAD) domain proteins. BLUF domains are present in various proteins(More)
Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from(More)
Proteins containing a sensor of blue light using FAD (BLUF) domain control diverse cellular processes, such as gene expression, nucleotide metabolism and motility, by relaying blue light signals to distinct output units. Despite its crucial and widespread functions, the mechanism of BLUF signal transduction has remained elusive. We determined crystal(More)
The intermediate filament subunit protein vimentin is efficiently cleaved in vitro by purified human immunodeficiency virus type 1 protease. Immunological data confirm that identical sites are cleaved when vimentin is polymerized into filaments or occurs as protofilaments. The primary cleavage gives rise to a molecule lacking most of the tail domain and(More)
The anoxygenic phototrophic bacterium Rhodobacter sphaeroides uses different energy sources, depending on environmental conditions including aerobic respiration or, in the absence of oxygen, photosynthesis. Photosynthetic genes are repressed at high oxygen tension, but at intermediate levels their partial expression prepares the bacterium for using light(More)
We reconstructed the 3D Fourier intensity distribution of monodisperse prolate nanoparticles using single-shot 2D coherent diffraction patterns collected at DESY's FLASH facility when a bright, coherent, ultrafast x-ray pulse intercepted individual particles of random, unmeasured orientations. This first experimental demonstration of cryptotomography(More)
Most genomes of bacteria contain toxin-antitoxin (TA) systems. These gene systems encode a toxic protein and its cognate antitoxin. Upon antitoxin degradation, the toxin induces cell stasis or death. TA systems have been linked with numerous functions, including growth modulation, genome maintenance, and stress response. Members of the epsilon/zeta TA(More)
Human cofilin possesses the tendency for self-association, as indicated by the rapid formation of dimers and oligomers when reacted with water-soluble carbodiimide, Ellman's reagent, or glutathione disulfide. Intermolecular disulfide bonds involve Cys(39) and probably Cys(147) of two adjacent cofilin units. The disulfide-linked dimers and oligomers exhibit(More)
The chromosomal pezT gene of the Gram-positive pathogen Streptococcus pneumoniae encodes a protein that is homologous to the zeta toxin of the Streptococcus pyogenes plasmid pSM19035-encoded epsilon-zeta toxin-antitoxin system. Overexpression of pezT in Escherichia coli led to severe growth inhibition from which the bacteria recovered approximately 3 h(More)