Robert L. Moritz

Learn More
To identify proteins that bind mammalian IAP homolog A (MIHA, also known as XIAP), we used coimmuno-precipitation and 2D immobilized pH gradient/SDS PAGE, followed by electrospray ionization tandem mass spectrometry. DIABLO (direct IAP binding protein with low pI) is a novel protein that can bind MIHA and can also interact with MIHB and MIHC and the(More)
Vascular endothelial growth factor-D (VEGF-D) binds and activates the endothelial cell tyrosine kinase receptors VEGF receptor-2 (VEGFR-2) and VEGF receptor-3 (VEGFR-3), is mitogenic for endothelial cells, and shares structural homology and receptor specificity with VEGF-C. The primary translation product of VEGF-D has long N- and C-terminal polypeptide(More)
Inhibitor of apoptosis (IAP) proteins inhibit caspases, a function counteracted by IAP antagonists, insect Grim, HID, and Reaper and mammalian DIABLO/Smac. We now demonstrate that HtrA2, a mammalian homologue of the Escherichia coli heat shock-inducible protein HtrA, can bind to MIHA/XIAP, MIHB, and baculoviral OpIAP but not survivin. Although produced as a(More)
Exosomes are 40-100-nm diameter membrane vesicles of endocytic origin that are released by most cell types upon fusion of multivesicular bodies with the plasma membrane, presumably as a vehicle for cell-free intercellular communication. While early studies focused on their secretion from diverse cell types in vitro, exosomes have now been identified in body(More)
HUPO initiated the Plasma Proteome Project (PPP) in 2002. Its pilot phase has (1) evaluated advantages and limitations of many depletion, fractionation, and MS technology platforms; (2) compared PPP reference specimens of human serum and EDTA, heparin, and citrate-anti-coagulated plasma; and (3) created a publicly-available knowledge base(More)
Mass-spectrometry-based proteomics has become an important component of biological research. Numerous proteomics methods have been developed to identify and quantify the proteins in biological and clinical samples1, identify pathways affected by endogenous and exogenous perturbations2, and characterize protein complexes3. Despite successes, the(More)
Human blood plasma can be obtained relatively noninvasively and contains proteins from most, if not all, tissues of the body. Therefore, an extensive, quantitative catalog of plasma proteins is an important starting point for the discovery of disease biomarkers. In 2005, we showed that different proteomics measurements using different sample preparation and(More)
S-Gene-associated glycoproteins (S-glycoproteins) from styles of Nicotiana alata, identified by non-equilibrium two-dimensional electrophoresis, were purified by cation exchange fast protein liquid chromatography with yields of 0.5 to 8 micrograms of protein per style, depending on the S-genotype of the plant. The method relies on the highly basic nature of(More)
Mammalian gene silencing is established through methylation of histones and DNA, although the order in which these modifications occur remains contentious. Using the human beta-globin locus as a model, we demonstrate that symmetric methylation of histone H4 arginine 3 (H4R3me2s) by the protein arginine methyltransferase PRMT5 is required for subsequent DNA(More)
Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include MS to define protein sequence,(More)