Robert L. Jacob

Learn More
Many problems in science and engineering are best simulated as a set of mutually interacting models, resulting in a coupled or multiphysics model. These models present challenges stemming from their interdisciplinary nature and from their computational and algorithmic complexities. The computational complexity of individual models, combined with the(More)
A fully coupled ocean-atmosphere general circulation model (the Fast Ocean-Atmosphere Model) is used to simulate the Neoproterozoic climate with a reduced solar luminosity (95% of present-day), low atmospheric CO2 (140 ppmv), and an idealized tropical supercontinent. Two coupled simulations were completed with present-day and cold initial ocean(More)
Coupled climate models are large, multiphysics applications designed to simulate the Earth’s climate and predict the response of the climate to any changes in the forcing or boundary conditions. The Community Climate System Model (CCSM) is a widely used state-of-the-art climate model that has released several versions to the climate community over the past(More)
The Model Coupling Toolkit (MCT) is a software library for constructing parallel coupled models from individual parallel models. MCT was created to address the challenges of creating a parallel coupler for the Community Climate System Model (CCSM). Each of the submodels that make up CCSM is a separate parallel application with its own domain decomposition,(More)
The Fast Ocean Atmosphere Model (FOAM) is a climate system model intended for application to climate science questions that require long simulations. FOAM is a distributed-memory parallel climate model consisting of parallel general circulation models of the atmosphere and ocean with complete physics paramaterizations as well as sea-ice, land surface, and(More)
We present the first synchronously coupled transient simulation of the evolution of the northern Africa climate-ecosystem for the last 6500 years in a global general circulation ocean–atmosphere–terrestrial ecosystem model. The model simulated the major abrupt vegetation collapse in the southern Sahara at about 5 ka, consistent with the proxy records. Local(More)
We describe the design and implementation of an application-level parallel I/O (PIO) library for the reading and writing of distributed arrays to several common scientific data formats. PIO provides the flexibility to control the number of I/O tasks through data rearrangement to an I/O friendly decomposition. This flexibility enables reductions in per task(More)
We report here on a project that expands the applicability of dynamic climate modeling to very long time scales. The Fast Ocean_Atmosphere Model (FOAM) is a coupled ocean-atmosphere model that incorporates physics of interest in understanding decade to century time scale variability. It addresses the high computational cost of this endeavor with a(More)