Learn More
Coupled climate models are large, multiphysics applications designed to simulate the Earth's climate and predict the response of the climate to any changes in the forcing or boundary conditions. The Community Climate System Model (CCSM) is a widely used state-of-the-art climate model that has released several versions to the climate community over the past(More)
The Fast Ocean Atmosphere Model (FOAM) is a climate system model intended for application to climate science questions that require long simulations. FOAM is a distributed-memory parallel climate model consisting of parallel general circulation models of the atmosphere and ocean with complete physics paramaterizations as well as sea-ice, land surface, and(More)
Ensemble simulations are a promising technique for identifying the signal of atmospheric response to extra-tropical sea surface temperature variability with high statistical significance. The basic idea is to perform multiple simulations from slightly different initial conditions and then to study the average signal of the ensemble. A significant obstacle(More)
We report here on a project that expands the applicability of dynamic climate modeling to very long time scales. The Fast Ocean_Atmosphere Model (FOAM) is a coupled ocean-atmosphere model that incorporates physics of interest in understanding decade to century time scale variability. It addresses the high computational cost of this endeavor with a(More)
The Community Climate System Model (CCSM) has been developed over the last decade, and it is used to understand past, present, and future climates. The latest versions of the model, CCSM4 and CESM1, contain totally new coupling capabilities in the CPL7 coupler that permit additional flexibility and extensibility to address the challenges involved in earth(More)