Learn More
been given different names, so that there are multiple Sodium Channels synonyms for many of sodium channel isoforms. To eliminate confusion resulting from the multiplicity of names, we propose a standardized nomenclature for Voltage-gated sodium channels are critical elements of voltage-gated sodium channels (Table 1). This nomen-action potential initiation(More)
We describe the isolation and characterization of a cDNA encoding the alpha subunit of a new voltage-sensitive sodium channel, microI, from rat skeletal muscle. The 1840 amino acid microI peptide is homologous to alpha subunits from rat brain, but, like the protein from eel electroplax, lacks an extended (approximately 200) amino acid segment between(More)
The principal voltage-sensitive sodium channel from human heart has been cloned, sequenced, and functionally expressed. The cDNA, designated hH1, encodes a 2016-amino acid protein that is homologous to other members of the sodium channel multigene family and bears greater than 90% identity to the tetrodotoxin-insensitive sodium channel characteristic of rat(More)
1. The characteristics of saxitoxin (STX) binding to the mammalian Na channel have been studied in purified sarcolemma isolated from rat skeletal muscle. 2. STX binds specifically to isolated sarcolemma with a Kd of 1.43 x 10(-9) M and Bmax of 7-8 p-mole STX bound/mg membrane protein at 0 degrees C in the presence of 140 mM-NaCl. In rat muscle homogenate(More)
The alpha subunit of a voltage-sensitive sodium channel characteristic of denervated rat skeletal muscle was cloned and characterized. The cDNA encodes a 2018 amino acid protein (SkM2) that is homologous to other recently cloned sodium channels, including a tetrodotoxin (TTX)-sensitive sodium channel from rat skeletal muscle (SkM1). The SkM2 protein is no(More)
Mutations in the adult human skeletal muscle Na+ channel alpha subunit cause the disease paramyotonia congenita. Two paramyotonia congenita mutations, R1448H and R1448C, substitute histidine and cysteine for arginine in the S4 segment of domain 4. These mutations, expressed in a cell line, have only small effects on the activation of Na+ currents, but(More)
Mutations in the skeletal muscle voltage-gated Na+ channel alpha-subunit have been found in patients with two distinct hereditary disorders of sarcolemmal excitation: hyperkalemic periodic paralysis (HYPP) and paramyotonia congenita (PC). Six of these mutations have been functionally expressed in a heterologous cell line (tsA201 cells) using the recombinant(More)
In muscle fibers from the rat diaphragm, 85% of the resting membrane ion conductance is attributable to Cl-. At 37 degree C and pH 7.0, GCl averages 2.11 mmho/cm2 while residual conductance largely due to K+ averages 0.34 mmho/cm2. The resting GCl exhibits a biphasic temperature dependence with a Q10 of 1.6 between 6 degree C and 25 degree C and a Q10 of(More)
We have characterized a group of cis-regulatory elements that control muscle-specific expression of the rat skeletal muscle type 1 sodium channel (SkM1) gene. These elements are located within a 3. 1-kilobase fragment that encompasses the 5'-flanking region, first exon, and part of the first intron of SkM1. We sequenced the region between -1062 and +311 and(More)