Learn More
UNLABELLED SciRoKo is a user-friendly software tool for the identification of microsatellites in genomic sequences. The combination of an extremely fast search algorithm with a built-in summary statistic tool makes SciRoKo an excellent tool for full genome analysis. Compared to other already existing tools, SciRoKo also allows the analysis of compound(More)
Recent statistical analyses suggest that sequencing of pooled samples provides a cost effective approach to determine genome-wide population genetic parameters. Here we introduce PoPoolation, a toolbox specifically designed for the population genetic analysis of sequence data from pooled individuals. PoPoolation calculates estimates of θ(Watterson), θ(π),(More)
SUMMARY Sequencing pooled DNA samples (Pool-Seq) is the most cost-effective approach for the genome-wide comparison of population samples. Here, we introduce PoPoolation2, the first software tool specifically designed for the comparison of populations with Pool-Seq data. PoPoolation2 implements a range of commonly used measures of differentiation (F(ST),(More)
Transposable elements (TEs) are mobile genetic elements that parasitize genomes by semi-autonomously increasing their own copy number within the host genome. While TEs are important for genome evolution, appropriate methods for performing unbiased genome-wide surveys of TE variation in natural populations have been lacking. Here, we describe a novel and(More)
SUMMARY An analysis of gene set [e.g. Gene Ontology (GO)] enrichment assumes that all genes are sampled independently from each other with the same probability. These assumptions are violated in genome-wide association (GWA) studies since (i) longer genes typically have more single-nucleotide polymorphisms resulting in a higher probability of being sampled(More)
Understanding the genetic underpinnings of adaptive change is a fundamental but largely unresolved problem in evolutionary biology. Drosophila melanogaster, an ancestrally tropical insect that has spread to temperate regions and become cosmopolitan, offers a powerful opportunity for identifying the molecular polymorphisms underlying clinal adaptation. Here,(More)
Standing genetic variation provides a rich reservoir of potentially useful mutations facilitating the adaptation to novel environments. Experimental evolution studies have demonstrated that rapid and strong phenotypic responses to selection can also be obtained in the laboratory. When combined with the next-generation sequencing technology, these(More)
The genomic basis of adaptation to novel environments is a fundamental problem in evolutionary biology that has gained additional importance in the light of the recent global change discussion. Here, we combined laboratory natural selection (experimental evolution) in Drosophila melanogaster with genome-wide next generation sequencing of DNA pools(More)
Experimental evolution in combination with whole-genome sequencing (evolve and resequence [E&R]) is a promising approach to define the genotype-phenotype map and to understand adaptation in evolving populations. Many previous studies have identified a large number of putative selected sites (i.e., candidate loci), but it remains unclear to what extent these(More)
BACKGROUND Compound microsatellites are a special variation of microsatellites in which two or more individual microsatellites are found directly adjacent to each other. Until now, such composite microsatellites have not been investigated in a comprehensive manner. RESULTS Our in silico survey of microsatellite clustering in genomes of Homo sapiens,(More)