Learn More
Glycosphingolipids (GSLs) and their sialic acid-containing derivatives, gangliosides, are important cellular components and are abundant in the nervous system. They are known to undergo dramatic changes during brain development. However, knowledge on the mechanisms underlying their qualitative and qualitative changes is still fragmentary. In this(More)
We have devised a high performance thin-layer chromatography (HPTLC) densitometry method to resolve the major lipid classes of brain tissue. We used DEAE-Sephadex column chromatography to separate the total lipid into neutral and acidic lipid fractions. The lipid fractions were then spotted on separate HPTLC plates and chromatographed in one dimension using(More)
Peripheral nerve glycolipids, with which anti-myelin-associated glycoprotein (MAG) antibodies from patients with demyelinating neuropathy and plasma cell dyscrasia cross-react, proved to be novel glycosphingolipids containing a sulfated glucuronyl residue. Consequently, there has been much interest in the immunological role that these sulfated(More)
Gangliosides are expressed in the outer leaflet of the plasma membrane of the cells of all vertebrates and are particularly abundant in the nervous system. Ganglioside metabolism is closely associated with the pathology of Alzheimer's disease (AD). AD, the most common form of dementia, is a progressive degenerative disease of the brain characterized(More)
Developmental changes in ganglioside composition and biosynthesis was studied in rat brain between embryonic day (E) 14 and birth. In E14 brains, GM3 and GD3 were predominant. At E16, "b" series gangliosides, such as GD1b, GT1b, and GQ1b, increased in content. After E18, "a" series gangliosides such as GM1, GD1a, and GT1a increased in content, and the(More)
Biochemical studies have indicated that the disialoganglioside, GD3, is a major glycolipid component of the immature vertebrate CNS, but a minor element within the mature CNS. We have investigated its cellular localization in rat CNS by immunofluorescence using a mouse monoclonal antibody that recognizes GD3. In tissue sections of postnatal CNS, the(More)
Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nervous system. They are localized primarily in the outer leaflets of plasma membranes and participated in cell–cell recognition, adhesion, and signal transduction and are integral components of cell surface microdomains or lipid rafts along with proteins, sphingomyelin(More)
The major neutral and acidic cerebellar lipids were studied in audiogenic seizure (AGS)-resistant C57BL/6 (B6) and AGS-susceptible DBA/2J (D2) mice. These cerebellar lipids were also studied in the D2.B6- Iasb congenic mice and in the B6D2F1 hybrids that are mostly AGS resistant. Except for the Iasb gene, which inhibits AGS susceptibility, the D2.B6- Iasb(More)
Conversion of the soluble, nontoxic amyloid β-protein (Aβ) into an aggregated, toxic form rich in β-sheets is a key step in the onset of Alzheimer's disease (AD). It has been suggested that Aβ induces changes in neuronal membrane fluidity as a result of its interactions with membrane components such as cholesterol, phospholipids, and gangliosides.(More)