Learn More
The intrachromosomal distribution of non-telomeric sites of the (TTAGGG)n telomeric repeat was determined for 100 vertebrate species. The most common non-telomeric location of this sequence was in the pericentric regions of chromosomes. A variety of species showed relatively large amounts of this sequence present within regions of constitutive(More)
A highly conserved repetitive DNA sequence, (TTAGGG)n, has been isolated from a human recombinant repetitive DNA library. Quantitative hybridization to chromosomes sorted by flow cytometry indicates that comparable amounts of this sequence are present on each human chromosome. Both fluorescent in situ hybridization and BAL-31 nuclease digestion experiments(More)
Highly conserved repetitive DNA sequence clones, largely consisting of (GGAAT)n repeats, have been isolated from a human recombinant repetitive DNA library by high-stringency hybridization with rodent repetitive DNA. This sequence, the predominant repetitive sequence in human satellites II and III, is similar to the essential core DNA of the Saccharomyces(More)
By using the 1.6 million single-nucleotide polymorphism (SNP) genotype data set from Perlegen Sciences [Hinds, D. A., Stuve, L. L., Nilsen, G. B., Halperin, E., Eskin, E., Ballinger, D. G., Frazer, K. A. & Cox, D. R. (2005) Science 307, 1072-1079], a probabilistic search for the landscape exhibited by positive Darwinian selection was conducted. By sorting(More)
To determine the evolutionary origin of the human telomere sequence (TTAGGG)n, biotinylated oligodeoxynucleotides of this sequence were hybridized to metaphase spreads from 91 different species, including representative orders of bony fish, reptiles, amphibians, birds, and mammals. Under stringent hybridization conditions, fluorescent signals were detected(More)
Associations have been reported of the seven-repeat (7R) allele of the human dopamine receptor D4 (DRD4) gene with both attention-deficit/hyperactivity disorder and the personality trait of novelty seeking. This polymorphism occurs in a 48-bp tandem repeat in the coding region of DRD4, with the most common allele containing four repeats (4R) and rarer(More)
We have identified a 26.5 kb gene-rich duplication shared by human Xq28 and 16p11.1. Complete comparative sequence analysis of cosmids from both loci has revealed identical Xq28 and 16p11.1 genomic structures for both the human creatine transporter gene (SLC6A8) and five exons of the CDM gene (DXS1357E). Overall nucleotide similarity within the duplication(More)
An association of the dopamine receptor D4 (DRD4) gene located on chromosome 11p15.5 and attention deficit/hyperactivity disorder (ADHD) has been demonstrated and replicated by multiple investigators. A specific allele [the 7-repeat of a 48-bp variable number of tandem repeats (VNTR) in exon 3] has been proposed as an etiological factor in attentional(More)
The distribution of interspersed repetitive DNA sequences in the human genome has been investigated, using a combination of biochemical, cytological, computational, and recombinant DNA approaches. "Low-resolution" biochemical experiments indicate that the general distribution of repetitive sequences in human DNA can be adequately described by models that(More)
The RAD51/RAD52-dependent DNA repair pathway is involved in DNA recombination and DNA double-strand break repair in yeast. Although many proteins in the RAD51/RAD52-dependent DNA repair pathway have been identified in yeast, a novel protein(s) that functions with RAD51/RAD52 may also exist in humans. Using a yeast two-hybrid system, we have identified a(More)