Robert K. Henderson

Learn More
We report on a new single-photon avalanche diode (SPAD) fabricated in a 130 nm CMOS imaging process. A novel circular structure combining shallow trench isolation (STI) and a passivation implant creates an effective guard ring against premature edge breakdown. Thanks to this guard ring, unprecedented levels of miniaturization may be achieved at no cost of(More)
——We report on the design and characterization of a novel time-resolved image sensor fabricated in a 130 nm CMOS process. Each pixel within the 32 32 pixel array contains a low-noise single-photon detector and a high-precision time-to-digital converter (TDC). The 10-bit TDC exhibits a timing resolution of 119 ps with a timing uniformity across the entire(More)
Image sensors capable of resolving the time-of-arrival (ToA) of individual photons with high resolution are needed in several applications, such as fluorescence lifetime imaging microscopy (FLIM), Förster resonance energy transfer (FRET), optical rangefinding, and positron emission tomography. In FRET, for example, typical fluorescence lifetime is of the(More)
We report on the first implementation of a single photon avalanche diode (SPAD) in 130 nm complementary metal– oxide–semiconductor (CMOS) technology. The SPAD is fabricated as p+/n-well junction with octagonal shape. A guard ring of p-well around the p+ anode is used to prevent premature discharge. To investigate the dynamics of the new device, both active(More)
A high-speed and hardware-only algorithm using a center of mass method has been proposed for single-detector fluorescence lifetime sensing applications. This algorithm is now implemented on a field programmable gate array to provide fast lifetime estimates from a 32 × 32 low dark count 0.13 μm complementary metal-oxide-semiconductor single-photon avalanche(More)
We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD)-based cameras for fluorescence lifetime imaging microscopy (FLIM) by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and(More)
Vacuum based devices, such as Photo Multiplier Tubes (PMT) and Micro Channel Plates (MCP), have been for many years the sensors of choice for most applications calling for photon counting and timing (Renker, 2004). While providing very good sensitivity, noise and timing characteristics, these photodetectors feature a number of disadvantages: they are bulky,(More)
e report the design and characterisation of a 32x32 time to digital (TDC) converter plus single photon avalanche diode (SPAD) pixel array implemented in a 130nm imaging process. Based on a gated ring oscillator approach, the 10 bit, 50μm pitch TDC array exhibits a minimum time resolution of 50ps, with accuracy of ±0.5 LSB DNL and 2.4 LSB INL. Process,(More)
A single photon avalanche diode structure implemented in a 130nm imaging process is reported. The device employs a p-well anode, rather than the commonly adopted p+, and a novel guard ring compatible with recent scaling trends in standard nanometer scale CMOS technologies. The 50μm active area device exhibits a dark count rate (DCR) of 25Hz at 20°C and a(More)