Robert-Jan Bosman

Learn More
Predicting the survival status of Intensive Care patients at the end of their hospital stay is useful for various clinical and organizational tasks. Current models for predicting mortality use logistic regression models that rely solely on data collected during the first 24h of patient admission. These models do not exploit information contained in daily(More)
OBJECTIVES The current established mortality predictive models in the intensive care rely only on patient information gathered within the first 24 hours of admission. Recent research demonstrated the added prognostic value residing in the sequential organ-failure assessment (SOFA) score which quantifies on each day the cumulative patient organ derangement.(More)
In intensive care medicine close monitoring of organ failure status is important for the prognosis of patients and for choices regarding ICU management. Major challenges in analyzing the multitude of data pertaining to the functioning of the organ systems over time are to extract meaningful clinical patterns and to provide predictions for the future course(More)
An important problem in the Intensive Care is how to predict on a given day of stay the eventual hospital mortality for a specific patient. A recent approach to solve this problem suggested the use of frequent temporal sequences (FTSs) as predictors. Methods following this approach were evaluated in the past by inducing a model from a training set and(More)
As the support and stabilization of organ function is a major goal of treatment in the Intensive Care Unit (ICU), changes in the function of organ systems are an important indicator of the progression of the disease and recovery. This paper presents how to construct a model that describes changes in organ failure of ICU patients on a day-to-day basis. The(More)
  • 1