Robert J. Zatorre

Learn More
The human voice contains in its acoustic structure a wealth of information on the speaker's identity and emotional state which we perceive with remarkable ease and accuracy. Although the perception of speaker-related features of voice plays a major role in human communication, little is known about its neural basis. Here we show, using functional magnetic(More)
We used positron emission tomography to study neural mechanisms underlying intensely pleasant emotional responses to music. Cerebral blood flow changes were measured in response to subject-selected music that elicited the highly pleasurable experience of "shivers-down-the-spine" or "chills." Subjective reports of chills were accompanied by changes in heart(More)
We used positron emission tomography to examine the response of human auditory cortex to spectral and temporal variation. Volunteers listened to sequences derived from a standard stimulus, consisting of two pure tones separated by one octave alternating with a random duty cycle. In one series of five scans, spectral information (tone spacing) remained(More)
The gyral morphology of the region of the primary auditory cortex (PAC) in the human brain is highly variable, and possible asymmetries between the hemispheres have been noted since the beginning of the century. We mapped the location and extent of PAC as identified from gross anatomical landmarks in magnetic resonance scans that had been transformed into(More)
Cerebral activation was measured with positron emission tomography in ten human volunteers. The primary auditory cortex showed increased activity in response to noise bursts, whereas acoustically matched speech syllables activated secondary auditory cortices bilaterally. Instructions to make judgments about different attributes of the same speech signal(More)
Neural correlates of the often-powerful emotional responses to music are poorly understood. Here we used positron emission tomography to examine cerebral blood flow (CBF) changes related to affective responses to music. Ten volunteers were scanned while listening to six versions of a novel musical passage varying systematically in degree of dissonance.(More)
We performed successive H(2)(15)O-PET scans on volunteers as they ate chocolate to beyond satiety. Thus, the sensory stimulus and act (eating) were held constant while the reward value of the chocolate and motivation of the subject to eat were manipulated by feeding. Non-specific effects of satiety (such as feelings of fullness and autonomic changes) were(More)
Human brain imaging has identified structural changes in gray and white matter that occur with learning. However, ascribing imaging measures to underlying cellular and molecular events is challenging. Here we review human neuroimaging findings of structural plasticity and then discuss cellular and molecular level changes that could underlie observed imaging(More)
The neural correlates of music perception were studied by measuring cerebral blood flow (CBF) changes with positron emission tomography (PET). Twelve volunteers were scanned using the bolus water method under four separate conditions: (1) listening to a sequence of noise bursts, (2) listening to unfamiliar tonal melodies, (3) comparing the pitch of the(More)
We examine the functional characteristics of auditory cortical areas that are sensitive to spatial cues in the human brain, and determine whether they can be dissociated from parietal lobe mechanisms. Three positron emission tomography (PET) experiments were conducted using a speaker array permitting quasi free-field sound presentation within the scanner.(More)