Robert J. Tomanek

Learn More
To test the hypotheses that cyclic stretch of 1) cardiac myocytes produces factors that trigger angiogenic events in coronary microvascular endothelial cells (CMEC) and 2) CMEC enhances the expression of growth factors, cardiac myocytes and CMEC were subjected to cyclic stretch in a Flexercell Strain Unit. Vascular endothelial growth factor (VEGF) but not(More)
Previous studies from our laboratory and those of others have shown thyroxine to be a stimulator of coronary microvascular growth. The present study tested the hypothesis that 3,5-diiodothyropropionic acid (DITPA), a thyroid hormone analog with inotropic but not chronotopic characteristics, is angiogenic in the nonischemic heart. Daily injections (3.75(More)
We studied the effect of increased ventricular pressure on heart growth in the stage 21 (3.5-day) chick embryo. Ventricular pressure was increased by constricting the conotruncus with a loop of 10-0 nylon tied in an overhand knot. The embryos were reincubated, and physiology and cellular morphology were evaluated at successive stages of development, stages(More)
Although a substantial coronary angiogenesis occurs after thyroid hormone treatment, its regulation and relationship to cardiac hypertrophy are not understood. This study was designed to determine (1) the onset of capillary proliferation, (2) the sites of capillary proliferation, and (3) whether basic fibroblast growth factor (bFGF) upregulation occurs in(More)
Mechanical stretch, an important growth stimulus, results not only from pulsatile blood flow and diastolic stretch of the ventricles [cyclic stretch (CS)] but also from tissue expansion during growth [constant static stretch (SS)]. We compared growth factor receptor expression and vasculogenic/angiogenic responses of rat coronary microvascular endothelial(More)
During the past decade our understanding of the complex interaction between cardiac muscle and coronary vascular growth has increased substantially. Some types of cardiac hypertrophy, for example, left ventricular hypertrophy secondary to hyperthyroidism, are associated with increased coronary vascular growth. However, in most animal preparations of(More)
The roles of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF [FGF-2]) in early postnatal regulation of coronary angiogenesis were investigated by administering neutralizing antibodies to these growth factors between postnatal days 5 and 12. Immunohistochemistry and Western blotting both revealed decreases in VEGF protein(More)
Vascular endothelial growth factor (VEGF) plays an important role in early embryonic vasculogenesis. To establish its temporal expression and localization in the heart during development, we studied rat hearts from the first embryonic day (E) of myocardial vascular tube formation through the early postnatal period. Ventricular VEGF immunoreactivity was(More)