Robert J. Matusik

Learn More
Progress toward understanding the biology of prostate cancer has been slow due to the few animal research models available to study the spectrum of this uniquely human disease. To develop an animal model for prostate cancer, several lines of transgenic mice were generated by using the prostate-specific rat probasin promoter to derive expression of the(More)
Increased Myc gene copy number is observed in human prostate cancer. To define Myc's functional role, we generated transgenic mice expressing human c-Myc in the mouse prostate. All mice developed murine prostatic intraepithelial neoplasia followed by invasive adenocarcinoma. Microarray-based expression profiling identified a Myc prostate cancer expression(More)
Probasin (PB) gene product is prostate-specific, epithelial cell in origin, and androgen-regulated. A large 12-kb promoter fragment of the PB gene (LPB) was linked to the simian virus 40 (SV40) large T antigen (Tag) deletion mutant (that removes the expression of the small t antigen) to deliver consistently high levels of transgene expression to the(More)
To facilitate the elucidation of the genetic events that may play an important role in the development or tumorigenesis of the prostate gland, we have generated a transgenic mouse line with prostate-specific expression of Cre recombinase. This line, named PB-Cre4, carries the Cre gene under the control of a composite promoter, ARR2PB which is a derivative(More)
We have shown that a polypeptide of M(r) 60,000 (60K) that shares N-terminal homology with a calcium-binding protein, calreticulin, can bind to an amino-acid sequence motif, KXGFFKR, found in the cytoplasmic domains of all integrin alpha-subunits. The homologous amino-acid sequence, KXFFKR (where X is either G, A or V), is also present in the DNA-binding(More)
15-Lipoxygenase (15-LOX)-2 is expressed in benign prostate secretory cells and benign prostate produces 15S-hydroxyeicosatetraenoic acid (15S-HETE) from exogenous arachidonic acid (AA). In contrast, 15S-LOX-2 and 15S-HETE formation are reduced in prostate carcinoma (Pca). The mechanisms whereby reduced 15-LOX-2 may contribute to Pca development or(More)
Androgens and mesenchymal factors are essential extracellular signals for the development as well as the functional activity of the prostate epithelium. Little is known of the intraepithelial determinants that are involved in prostatic differentiation. Here we found that hepatocyte nuclear factor-3 alpha (HNF-3 alpha), an endoderm developmental factor, is(More)
The androgen receptor (AR), a member of the steroid receptor superfamily of nuclear transcription factors, mediates androgen signaling in diverse target tissues. Here we report AR gene mutations identified in human prostate cancer and the autochthonous transgenic adenocarcinoma of the mouse prostate model that colocate to residues (668)QPIF(671) at the(More)
BACKGROUND The role of Wnt/beta-Catenin signaling in embryogenesis and carcinogenesis has been extensively studied in organs such as colon, lung and pancreas, but little is known about Wnt/beta-Catenin signaling in the prostate. Although stabilizing mutations in APC and beta-Catenin are rare in primary prostate tumors, recent studies suggest that(More)
We report here syntenic loci in humans and mice incorporating gene clusters coding for secreted proteins each comprising 10 cysteine residues. These conform to three-fingered protein/Ly-6/urokinase-type plasminogen activator receptor (uPAR) domains that shape three-fingered proteins (TFPs). The founding gene is PATE, expressed primarily in prostate and less(More)