Robert J . Lefkowitz

Learn More
Seven-transmembrane receptors, which constitute the largest, most ubiquitous and most versatile family of membrane receptors, are also the most common target of therapeutic drugs. Recent findings indicate that the classical models of G-protein coupling and activation of second-messenger-generating enzymes do not fully explain their remarkably diverse(More)
The transmission of extracellular signals to the interior of the cell is a function of plasma membrane receptors, of which the seven transmembrane receptor family is by far the largest and most versatile. Classically, these receptors stimulate heterotrimeric G proteins, which control rates of generation of diffusible second messengers and entry of ions at(More)
We have replaced the C-terminal portion of the third intracellular loop of the beta 2-adrenergic receptor (residues 266-272) with the homologous region of the alpha 1B-adrenergic receptor. In a fashion analogous to the reciprocal mutations of the alpha 1B receptor previously described (Cotecchia, S., Exum, S., Caron, M. G., and Lefkowitz, R. J. (1990) Proc.(More)
Dopamine plays an important role in the etiology of schizophrenia, and D2 class dopamine receptors are the best-established target of antipsychotic drugs. Here we show that D2 class-receptor-mediated Akt regulation involves the formation of signaling complexes containing beta-arrestin 2, PP2A, and Akt. beta-arrestin 2 deficiency in mice results in reduction(More)
G protein-coupled receptor kinases (GRKs) constitute a family of six mammalian serine/threonine protein kinases that phosphorylate agonist-bound, or activated, G protein-coupled receptors (GPCRs) as their primary substrates. GRK-mediated receptor phosphorylation rapidly initiates profound impairment of receptor signaling, or desensitization. This review(More)
The Ras-dependent activation of mitogen-activated protein (MAP) kinase pathways by many receptors coupled to heterotrimeric guanine nucleotide binding proteins (G proteins) requires the activation of Src family tyrosine kinases. Stimulation of beta2 adrenergic receptors resulted in the assembly of a protein complex containing activated c-Src and the(More)
Upon their discovery, beta-arrestins 1 and 2 were named for their capacity to sterically hinder the G protein coupling of agonist-activated seven-transmembrane receptors, ultimately resulting in receptor desensitization. Surprisingly, recent evidence shows that beta-arrestins can also function to activate signaling cascades independently of G protein(More)
Many of the G-protein-coupled receptors for hormones that bind to the cell surface can signal to the interior of the cell through several different classes of G protein. For example, although most of the actions of the prototype beta2-adrenergic receptor are mediated through Gs proteins and the cyclic-AMP-dependent protein kinase (PKA) system,(More)
beta-Arrestins are versatile adapter proteins that form complexes with most G-protein-coupled receptors (GPCRs) following agonist binding and phosphorylation of receptors by G-protein-coupled receptor kinases (GRKs). They play a central role in the interrelated processes of homologous desensitization and GPCR sequestration, which lead to the termination of(More)
Although trafficking and degradation of several membrane proteins are regulated by ubiquitination catalyzed by E3 ubiquitin ligases, there has been little evidence connecting ubiquitination with regulation of mammalian G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) function. Agonist stimulation of endogenous or(More)