Robert J. Kavlock

Learn More
BACKGROUND Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency's ToxCast program aims to address these concerns by screening and prioritizing chemicals for potential human toxicity(More)
BACKGROUND Thirty years of pesticide registration toxicity data have been historically stored as hardcopy and scanned documents by the U.S. Environmental Protection Agency (EPA). A significant portion of these data have now been processed into standardized and structured toxicity data within the EPA's Toxicity Reference Database (ToxRefDB), including(More)
BACKGROUND In 2008, the National Institute of Environmental Health Sciences/National Toxicology Program, the U.S. Environmental Protection Agency's National Center for Computational Toxicology, and the National Human Genome Research Institute/National Institutes of Health Chemical Genomics Center entered into an agreement on "high throughput screening,(More)
The U.S. Environmental Protection Agency (EPA) is developing methods for utilizing computational chemistry, high-throughput screening (HTS), and various toxicogenomic technologies to predict potential for toxicity and prioritize limited testing resources toward chemicals that likely represent the greatest hazard to human health and the environment. This(More)
The hypothesis has been put forward that humans and wildlife species adverse suffered adverse health effects after exposure to endocrine-disrupting chemicals. Reported adverse effects include declines in populations, increases in cancers, and reduced reproductive function. The U.S. Environmental Protection Agency sponsored a workshop in April 1995 to bring(More)
The purpose of the Benchmark Dose Workshop was to assess the feasibility and implications of replacing the no observed adverse effect level (NOAEL) with a benchmark dose (BMD) when deriving reference doses and concentrations (RfDs and RfCs). The workshop participants supported the use of the BMD method to remove many of the limitations inherent in using the(More)
As the primary source for regulatory developmental toxicity information, prenatal studies characterize maternal effects and fetal endpoints including malformations, resorptions, and fetal weight reduction. Results from 383 rat and 368 rabbit prenatal studies on 387 chemicals, mostly pesticides, were entered into the U.S. Environmental Protection Agency's(More)
Although quantitative modeling has been central to cancer risk assessment for years, the concept of dose-response modeling for developmental effects is relatively new. The benchmark dose (BMD) approach has been proposed for use with developmental (as well as other noncancer) endpoints for determining reference doses and reference concentrations. Statistical(More)
The complexity of human biology has made prediction of health effects as a consequence of exposure to environmental chemicals especially challenging. Complex cell systems, such as the Biologically Multiplexed Activity Profiling (BioMAP) primary, human, cell-based disease models, leverage cellular regulatory networks to detect and distinguish chemicals with(More)
Many chemicals in commerce today have undergone limited or no safety testing. To reduce the number of untested chemicals and prioritize limited testing resources, several governmental programs are using high-throughput in vitro screens for assessing chemical effects across multiple cellular pathways. In this study, metabolic clearance and plasma protein(More)