Learn More
Estrogens are reported to have both anxiogenic and anxiolytic properties. This dichotomous neurobiological response to estrogens may be mediated by the existence of two distinct estrogen receptor (ER) systems, ERalpha and ERbeta. In brain, ERalpha plays a critical role in regulating reproductive neuroendocrine function, whereas ERbeta may be more important(More)
The rapid activation of stress-responsive neuroendocrine systems is a basic reaction of animals to perturbations in their environment. One well-established response is that of the hypothalamo-pituitary-adrenal (HPA) axis. In rats, corticosterone is the major adrenal steroid secreted and is released in direct response to adrenocorticotropin (ACTH) secreted(More)
To examine mechanisms responsible for sex differences in hypothalamo-pituitary-adrenal (HPA) axis responsiveness to stress, we studied the role of androgens in the regulation of the adrenocorticotropin (ACTH) and corticosterone (CORT) responses to foot shock and novelty stressors in gonadectomized (GDX) or intact male F344 rats. Foot shock or exposure to a(More)
Pulsatile secretion of gonadotropin releasing hormone in mammals is thought to depend on repetitive and prolonged bursts of action potentials in specific neuroendocrine cells. We have previously described episodes of electrical activity in isolated gonadotropin releasing hormone neurons, but the intrinsic mechanisms underlying the generation of spike bursts(More)
Estrogen receptor beta (ERbeta) and androgen receptor (AR) are found in high levels within populations of neurons in the hypothalamus. To determine whether AR or ERbeta plays a role in regulating hypothalamo-pituitary-adrenal (HPA) axis function by direct action on these neurons, we examined the effects of central implants of 17beta-estradiol (E2),(More)
The hormonal response to stress is enhanced by oestrogen but inhibited by androgens. To determine underlying changes in activity of neuropeptide neurones in the paraventricular nucleus of the hypothalamus (PVN), we examined the effect of oestrogen and androgen treatment on restraint-induced c-fos mRNA, corticotropin-releasing hormone (CRH) heteronuclear(More)
The hypothalamo-pituitary-adrenal (HPA) axis represents a complex neuroendocrine feedback loop controlling the secretion of adrenal glucocorticoid hormones. Central to its function is the paraventricular nucleus of the hypothalamus (PVN) where neurons expressing corticotropin releasing factor reside. These HPA motor neurons are a primary site of integration(More)
The hypothalamic-pituitary-adrenal axis regulates mammalian stress responses by secreting glucocorticoids. The magnitude of the response is in part determined by gender, for in response to a given stressor, circulating glucocorticoids reach higher levels in female rats than in males. This gender difference could result from estrogen regulation of the(More)
The corticosterone (CORT) response to environmental perturbation has been shown to be enhanced by estrogen but inhibited by the androgen dihydrotestosterone (DHT). However, the mechanism of androgen's action has not been identified. This study examined the effects of estradiol benzoate (EB), the non-aromatizable androgen DHT, and the DHT metabolite(More)
The causal relationship between atrazine exposure and the occurrence of breast cancer in women was evaluated using the framework developed by Adami et al. (2011) wherein biological plausibility and epidemiological evidence were combined to conclude that a causal relationship between atrazine exposure and breast cancer is "unlikely". Carcinogenicity studies(More)