Learn More
Near-Infrared Spectroscopy (NIRS) allows the recovery of cortical oxy- and deoxyhemoglobin changes associated with evoked brain activity. NIRS is a back-reflection measurement making it very sensitive to the superficial layers of the head, i.e. the skin and the skull, where systemic interference occurs. As a result, the NIRS signal is strongly contaminated(More)
PCR has revolutionized the field of infectious disease diagnosis. To overcome the inherent disadvantage of cost and to improve the diagnostic capacity of the test, multiplex PCR, a variant of the test in which more than one target sequence is amplified using more than one pair of primers, has been developed. Multiplex PCRs to detect viral, bacterial, and/or(More)
Near-Infrared Spectroscopy (NIRS) measures the functional hemodynamic response occurring at the surface of the cortex. Large pial veins are located above the surface of the cerebral cortex. Following activation, these veins exhibit oxygenation changes but their volume likely stays constant. The back-reflection geometry of the NIRS measurement renders the(More)
Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data(More)
Functional near-infrared spectroscopy (fNIRS) is an optical imaging method that is used to noninvasively measure cerebral hemoglobin concentration changes induced by brain activation. Using structural guidance in fNIRS research enhances interpretation of results and facilitates making comparisons between studies. AtlasViewer is an open-source software(More)
To examine sample size requirements and optimum allocation of effort in point count sampling of bottomland hardwood forests, we computed minimum sample sizes from variation recorded during 82 point counts (May 7-May 16, 1992) from three localities containing three habitat types across three regions of the Mississippi Alluvial Valley (MAV). Also, we(More)
As the applications of near-infrared spectroscopy (NIRS) continue to broaden and long-term clinical monitoring becomes more common, minimizing signal artifacts due to patient movement becomes more pressing. This is particularly true in applications where clinically and physiologically interesting events are intrinsically linked to patient movement, as is(More)
Near-Infrared Spectroscopy (NIRS) allows the recovery of the evoked hemodynamic response to brain activation. In adult human populations, the NIRS signal is strongly contaminated by systemic interference occurring in the superficial layers of the head. An approach to overcome this difficulty is to use additional NIRS measurements with short optode(More)
Motion artifacts are a significant source of noise in many functional near-infrared spectroscopy (fNIRS) experiments. Despite this, there is no well-established method for their removal. Instead, functional trials of fNIRS data containing a motion artifact are often rejected completely. However, in most experimental circumstances the number of trials is(More)
We describe the validation of an anatomical brain atlas approach to the analysis of diffuse optical tomography (DOT). Using MRI data from 32 subjects, we compare the diffuse optical images of simulated cortical activation reconstructed using a registered atlas with those obtained using a subject's true anatomy. The error in localization of the simulated(More)