Learn More
The tripartite toxin secreted by Bacillus anthracis, the causative agent of anthrax, helps the bacterium evade the immune system and can kill the host during a systemic infection. Two components of the toxin enzymatically modify substrates within the cytosol of mammalian cells: oedema factor (OF) is an adenylate cyclase that impairs host defences through a(More)
The crystal structure of the diphtheria toxin dimer at 2.5 A resolution reveals a Y-shaped molecule of three domains. The catalytic domain, called fragment A, is of the alpha + beta type. Fragment B actually consists of two domains. The transmembrane domain consists of nine alpha-helices, two pairs of which are unusually apolar and may participate in(More)
The protective antigen component of anthrax toxin forms a homoheptameric pore in the endosomal membrane, creating a narrow passageway for the enzymatic components of the toxin to enter the cytosol. We found that, during conversion of the heptameric precursor to the pore, the seven phenylalanine-427 residues converged within the lumen, generating a radially(More)
The pore-forming toxin listeriolysin O (LLO) is a major virulence factor implicated in escape of Listeria monocytogenes from phagocytic vacuoles. Here we describe the pH-dependence of vacuolar perforation by LLO, using the membrane-impermeant fluorophore 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) to monitor the pH and integrity of vacuoles in mouse bone(More)
In this study, a protein that interacts with sequences encoded by the first exon of the protein kinase Bcr was cloned. The Bcr-associated protein 1 (Bap-1) is a member of the 14-3-3 family of proteins. Bap-1 interacts with full-length c-Bcr and with the chimeric Bcr-Abl tyrosine kinase of Philadelphia chromosome (Ph1)-positive human leukemias. Bap-1 is a(More)
When diphtheria toxin encounters a low pH environment, the channel-forming T domain undergoes a poorly understood conformational change that allows for both its own membrane insertion and the translocation of the toxin's catalytic domain across the membrane. From the crystallographic structure of the water-soluble form of diphtheria toxin, a "double dagger"(More)
PURPOSE The inhibition of angiogenesis by angiostatic steroids has been demonstrated in a variety of systems, including rabbit and rat cornea. There is considerable interest in the therapeutic potential of this class of compounds for angiogenic ocular conditions such as diabetic retinopathy, macular degeneration, and retinopathy of prematurity (ROP). This(More)
Anthrax toxin receptors 1 and 2 (ANTXR1 and ANTXR2) have a related integrin-like inserted (I) domain which interacts with a metal cation that is coordinated by residue D683 of the protective antigen (PA) subunit of anthrax toxin. The receptor-bound metal ion and PA residue D683 are critical for ANTXR1-PA binding. Since PA can bind to ANTXR2 with reduced(More)
Exotoxin A of Pseudomonas aeruginosa asserts its cellular toxicity through ADP-ribosylation of translation elongation factor 2, predicated on binding to specific cell surface receptors and intracellular trafficking via a complex pathway that ultimately results in translocation of an enzymatic activity into the cytoplasm. In early work, the crystallographic(More)
Anthrax toxin, comprising protective antigen, lethal factor, and oedema factor, is the major virulence factor of Bacillus anthracis, an agent that causes high mortality in humans and animals. Protective antigen forms oligomeric prepores that undergo conversion to membrane-spanning pores by endosomal acidification, and these pores translocate the enzymes(More)