Robert J. Clark

Learn More
A scalable, multiplexed ion trap for quantum information processing is fabricated and tested. The trap design and fabrication process are optimized for scalability to small trap size and large numbers of interconnected traps, and for integration of control electronics and optics. Multiple traps with similar designs are tested with 111 Cd + , 25 Mg + , and(More)
Bone is the most common site for metastasis in human prostate cancer patients. Skeletal metastases are a significant cause of morbidity and mortality and overall greatly affect the quality of life of prostate cancer patients. Despite advances in our understanding of the biology of primary prostate tumors, our knowledge of how and why secondary tumors(More)
Host tissue microenvironment plays key roles in cancer progression and colonization of secondary organs. One example is ovarian cancer, which colonizes the peritoneal cavity and especially the omentum. Our research indicates that the interaction of ovarian cancer cells with the omental microenvironment can activate a stress-kinase pathway involving the(More)
Overview This research group seeks to understand and develop the experimental and theoretical potential for information processing and communications using the laws of quantum physics. Two fundamental questions motivate our work: (1) How can a large-scale, reliable quantum computer be realized? (2) What new algorithms, cryptographic primitives, and(More)
Overview This research group seeks to understand and develop the experimental and theoretical potential for information processing and communications using the laws of quantum physics. Two fundamental questions motivate our work: (1) How can a large-scale, reliable quantum computer be realized? (2) What new algorithms, cryptographic primitives, and(More)
  • 1