Learn More
Gold nanomaterials (AuNMs) have distinctive electronic and optical properties, making them ideal candidates for biological, medical, and defense applications. Therefore, it is imperative to evaluate the potential biological impact of AuNMs before employing them in any application. This study investigates two AuNMs with different aspect ratios (AR) on(More)
To study the toxicity of nanoparticles under relevant conditions, it is critical to disperse nanoparticles reproducibly in different agglomeration states in aqueous solutions compatible with cell-based assays. Here, we disperse gold, silver, cerium oxide, and positively-charged polystyrene nanoparticles in cell culture media, using the timing between mixing(More)
The formation of silver nanoparticles (AgNPs) via reduction of silver ions (Ag(+)) in the presence of humic acids (HAs) under various environmentally relevant conditions is described. HAs tested originated from the Suwannee River (SUW), and included samples of three sedimentary HAs (SHAs), and five soils obtained across the state of Florida. The time(More)
We report on a systematic investigation of molecular conjugation of tumor necrosis factor-α (TNF) protein onto gold nanoparticles (AuNPs) and the subsequent binding behavior to its antibody (anti-TNF). We employ a combination of physical and spectroscopic characterization methods, including electrospray-differential mobility analysis, dynamic light(More)
Novel physicochemistries of engineered nanomaterials (ENMs) offer considerable commercial potential for new products and processes, but also the possibility of unforeseen and negative consequences upon ENM release into the environment. Investigations of ENM ecotoxicity have revealed that the unique properties of ENMs and a lack of appropriate test methods(More)
The adsorption and conformation of bovine serum albumin (BSA) on gold nanoparticles (AuNPs) were interrogated both qualitatively and quantitatively via complementary physicochemical characterization methods. Dynamic light scattering (DLS), asymmetric-flow field flow fractionation (AFFF), fluorescence spectrometry, and attenuated total reflectance-Fourier(More)
Distinguishing the toxic effects of nanoparticles (NPs) themselves from the well-studied toxic effects of their ions is a critical but challenging measurement for nanotoxicity studies and regulation. This measurement is especially difficult for silver NPs (AgNPs) because in many relevant biological and environmental solutions, dissolved silver forms AgCl(More)
The increasing application of engineered nanomaterials (ENMs) in consumer and medical products has motivated the development of single-particle inductively coupled plasma mass spectrometry (spICP-MS) for characterizing nanoparticles under realistic environmental exposure conditions. Recent studies have established a set of metrological criteria and(More)
This investigation focuses on predicting the persistence of citrate-capped 20 nm AgNPs by measuring their colloidal stability in natural freshwaters and synthetic aquatic media. Ultraviolet-visible absorbance spectroscopy, dynamic light scattering, and atomic force microscopy were used to evaluate the colloidal stability of AgNPs in locally-obtained pond(More)
The reported size distribution of silver nanoparticles (AgNPs) is strongly affected by the underlying measurement method, agglomeration state, and dispersion conditions. A selection of AgNP materials with vendor-reported diameters ranging from 1 nm to 100 nm, various size distributions, and biocompatible capping agents including citrate, starch and(More)