Learn More
The crystal structure of the 20S proteasome from the yeast Saccharomyces cerevisiae shows that its 28 protein subunits are arranged as an (alpha1...alpha7, beta1...beta7)2 complex in four stacked rings and occupy unique locations. The interior of the particle, which harbours the active sites, is only accessible by some very narrow side entrances. The(More)
The three-dimensional structure of the proteasome from the archaebacterium Thermoplasma acidophilum has been elucidated by x-ray crystallographic analysis by means of isomorphous replacement and cyclic averaging. The atomic model was built and refined to a crystallographic R factor of 22.1 percent. The 673-kilodalton protease complex consists of 14 copies(More)
Thermus thermophilus HB27 is an extremely thermophilic, halotolerant bacterium, which was originally isolated from a natural thermal environment in Japan. This organism has considerable biotechnological potential; many thermostable proteins isolated from members of the genus Thermus are indispensable in research and in industrial applications. We present(More)
The molecular structure of the photosynthetic reaction centre from Rhodopseudomonas viridis has been elucidated using X-ray crystallographic analysis. The central part of the complex consists of two subunits, L and M, each of which forms five membrane-spanning helices. We present the first description of the high-resolution structure of an integral membrane(More)
A novel type of bacterium has been isolated from various geothermally heated locales on the sea floor. The organisms are strictly anaerobic, rod-shaped, fermentative, extremely thermophilic and grow between 55 and 90°C with an optimum of around 80°C. Cells show a unique sheath-like structure and monotrichous flagellation. By 16S rRNA sequencing they clearly(More)
A stoichiometric complex of human stefin B and carboxymethylated papain has been crystallized in a trigonal crystal form. Data to 2.37 A resolution were collected using the area detector diffractometer FAST. The crystal structure of the complex has been solved by Patterson search techniques using papain as search model. Starting from the structure of(More)
The degradation of cytoplasmic proteins is an ATP-dependent process. Substrates are targeted to a single soluble protease, the 26S proteasome, in eukaryotes and to a number of unrelated proteases in prokaryotes. A surprising link emerged with the discovery of the ATP-dependent protease HslVU (heat shock locus VU) in Escherichia coli. Its protease component(More)
We have determined to 2.6 A resolution the crystal structure of the thermosome, the archaeal group II chaperonin from T. acidophilum. The hexadecameric homolog of the eukaryotic chaperonin CCT/TRiC shows an (alphabeta)4(alphabeta)4 subunit assembly. Domain folds are homologous to GroEL but form a novel type of inter-ring contact. The domain arrangement(More)
The aim of the study was to investigate whether the electromagnetic field (EMF) emitted by digital radiotelephone handsets affects brain physiology. Healthy, young male subjects were exposed for 30 min to EMF (900 MHz; spatial peak specific absorption rate 1 W/kg) during the waking period preceding sleep. Compared with the control condition with sham(More)
A novel rod-shaped hyperthermophilic archaeum has been isolated from a boiling marine water hole at Maronti Beach, Ischia, Italy. It grew optimally at 100 degrees C and pH 7.0 by aerobic respiration as well as by dissimilatory nitrate reduction, forming dinitrogen as a final product. Organic and inorganic compounds served as substrates during aerobic and(More)