Learn More
Fatigue, defined as the failure to maintain the required or expected power output, is a complex problem, since multiple factors are clearly involved, with the relative importance of each dependent on the fiber type composition of the contracting muscles(s), and the intensity, type, and duration of the contractile activity. The primary sites of fatigue(More)
Intracellular pH of in vitro diaphragm preparations was determined following low- (5 Hz, 1.5 min) and high- (75 Hz, 1 min) frequency stimulation, using glass microelectrodes of the liquid membrane type (pHm). Results were compared with values obtained by the standard homogenate technique (pHh). High- and low-frequency stimulation reduced peak tetanic(More)
Slow oxidative (SO) fibers of the adductor longus (AL) were predominantly damaged during voluntary reloading of hindlimb unloaded (HU) rats and appeared explainable by preferential SO fiber recruitment. The present study assessed damage after eliminating the variable of voluntary recruitment by tetanically activating all fibers in situ through the motor(More)
Our purpose is to summarize the major effects of space travel on skeletal muscle with particular emphasis on factors that alter function. The primary deleterious changes are muscle atrophy and the associated decline in peak force and power. Studies on both rats and humans demonstrate a rapid loss of cell mass with microgravity. In rats, a reduction in(More)
The aim of this investigation was to document the exercise program used by crewmembers (n = 9; 45 +/- 2 yr) while aboard the International Space Station (ISS) for 6 mo and examine its effectiveness for preserving calf muscle characteristics. Before and after spaceflight, we assessed calf muscle volume (MRI), static and dynamic calf muscle performance, and(More)
This study was undertaken to evaluate the relationship between physical performance capacity and the mitochondrial content of skeletal muscle. Four groups of rats were trained by means of treadmill running 5 days/wk for 13 wk. One group ran 10 min/day, a second group ran 30 min/day, a third group ran 60 min/day, and a fourth group ran 120 min/day. The(More)
The purpose of this study was to describe the alterations in the intracellular concentrations of sodium ([Na+]i) and potassium ([K+]i) and the membrane potential (Em) as a result of fatiguing stimulation of the frog semitendinosus muscle and to relate these changes to the alterations in the sarcolemma action potential and force-generating ability of the(More)
We used Ca2+-activated skinned muscle fibers to test the hypothesis that unilateral lower leg suspension (ULLS) alters cross-bridge mechanisms of muscle contraction. Soleus and gastrocnemius biopsies were obtained from eight subjects before ULLS, immediately after 12 days of ULLS (post-0 h), and after 6 h of reambulation (post-6 h). Post-0 h soleus fibers(More)
Our primary goal was to determine the effects of 6-mo flight on the International Space Station (ISS) on selected anaerobic and aerobic enzymes, and the content of glycogen and lipids in slow and fast fibers of the soleus and gastrocnemius. Following local anesthesia, biopsies were obtained from nine ISS crew members ∼45 days preflight and on landing day(More)
Spaceflight (SF) has been shown to cause skeletal muscle atrophy; a loss in force and power; and, in the first few weeks, a preferential atrophy of extensors over flexors. The atrophy primarily results from a reduced protein synthesis that is likely triggered by the removal of the antigravity load. Contractile proteins are lost out of proportion to other(More)