Robert H Fairclough

Learn More
Structural analysis of an acetylcholine receptor from Torpedo californica leads to a three-dimensional model in which a "monomeric" receptor is shown to contain subunits arranged around a central ionophoretic channel, which in turn traverses the entire 110 A length of the molecule. The receptor extends approximately 15 A on the cytoplasmic side, 55 A on the(More)
We have learned the positions of the alpha-subunits around the AChR rosette and the location of the toxin on the synaptic crest. A charge/hydrophobic character map of the 40 A X 30 A receptor surface that binds alpha-bungarotoxin has been constructed. A beta-structure domain surrounds the agonist binding site on the alpha-subunits, as predicted by(More)
We have probed the surface accessibility of residues alpha187 to alpha199 of the Torpedo acetylcholine receptor with monoclonal antibody 383C, which binds uniquely to these residues. However, 383C binds to only one of the two alpha subunits in the membrane-bound receptor, neither of the two subunits in carbamylcholine-desensitized receptor, and to both(More)
Acetylcholine receptor-enriched membranes bind 45 terbium cations per receptor. The Tb(III) X-ray scattering factor changes by as much as 30% over a 50 eV range about the L3 absorption edge. We exploit these changes to modulate the contribution of these ions to the X-ray diffraction pattern of oriented receptor-enriched membranes by varying the incident(More)
Monoclonal antibody 383C is an anti-acetylcholine receptor antibody whose binding to the receptor is blocked by alpha-bungarotoxin and by carbamylcholine. Monoclonal antibody 383C binds to the alpha subunit of the Torpedo acetylcholine (ACh) receptor as well as to its V8-protease 20 kDa fragment that possesses the affinity alkylatable Cys192/193. In an(More)
To develop antigen-specific immunotherapies for autoimmune diseases, knowledge of the molecular structure of targeted immunological hotspots will guide the production of reagents to inhibit and halt production of antigen specific attack agents. To this end we have identified three noncontiguous segments of the Torpedo nicotinic acetylcholine receptor (AChR)(More)
To analyze components of the idiotypic network in experimental autoimmune disease, we produced 17 isogeneic anti-idiotopic monoclonal antibodies (anti-Id) against two experimental autoimmune myasthenia gravis-producing anti-acetylcholine receptor (anti-AChR) monoclonal antibodies. We studied the binding of five of the anti-Id to the anti-AChR monoclonal(More)