Robert H Archer

Learn More
Phylogenetic relationships within Celastraceae (spindle-tree family) were inferred from nucleotide sequence characters from the 5' end of 26S nuclear ribosomal DNA (including expansion segments D1-D3; 84 species sampled), phytochrome B (58 species), rbcL (31 species), atpB (23 species), and morphology (94 species). Among taxa of questionable affinity,(More)
Phylogenetic relationships within Celastraceae were inferred using a simultaneous analysis of 61 morphological characters and 1123 base pairs of phytochrome B exon 1 from the nuclear genome. No gaps were inferred, and the gene tree topology suggests that the primers were specific to a single locus that did not duplicate among the lineages sampled. This(More)
Statistically designed experiments were used to identify variables important in the 7α-dehydroxylation of cholic acid to deoxycholic acid by strains of Clostridium bifermentans in pH-controlled anaerobic fermentation. Deoxycholic acid yields were highest in the presence of 10% CO2 and near pH 7 but were largely unaffected by the strain of organism used,(More)
Two strains of Clostridium bifermentans have been investigated for their ability to hydrolyse bile acid conjugates under conditions suited to further transformation of the free acids liberated. In batch fermentation at 0.5 g/l substrate concentration, growing cells effected the near-quantitative hydrolysis of glycodeoxycholate, taurodeoxycholate and(More)
AIMS The selection of exopolysaccharide (EPS)-producing strains of Lactobacillus delbrueckii subsp. bulgaricus. METHODS AND RESULTS Improved EPS-overproducing strains of L. delbrueckii subsp. bulgaricus were derived by chemical mutagenesis and selection. Initial screening of the chemically induced mutant pool relied primarily on the selection of strains(More)
Exopolysaccharide (EPS) metabolism was studied in a galactose-negative strain of Lactobacillus delbrueckii subsp. bulgaricus, using two different approaches. Firstly, using both the parent strain and a chemically induced mutant with higher yield and specific productivity of EPS than the parent, comparative information was obtained relating to enzyme(More)
The phylogeny of Celastraceae tribe Celastreae, which includes about 350 species of trees and shrubs in 15 genera, was inferred in a simultaneous analysis of morphological characters together with nuclear (ITS and 26S rDNA) and plastid (matK, trnL-F) genes. A strong correlation was found between the geography of the species sampled and their inferred(More)
The phylogeny of Celastraceae tribe Euonymeae (≈ 230 species in eight genera in both the Old and New Worlds) was inferred using morphological characters together with plastid (matK, trnL-F) and nuclear (ITS and 26S rDNA) genes. Tribe Euonymeae has been defined as those genera of Celastraceae with generally opposite leaves, isomerous carpels, loculicidally(More)
The phylogeny of Celastraceae subfamily Hippocrateoideae (∼ 100 species and 19 genera in the Old and New World tropics) was inferred using morphological characters together with plastid (matK, trnL-F) and nuclear (ITS and 26S rDNA) genes. The subfamily is easily recognized by the synapomorphies of transversely flattened, deeply lobed capsules and seeds with(More)
Of the 97 currently recognized genera of Celastraceae, 19 are native to Madagascar, including six endemics. In this study we conducted the most thorough phylogenetic analysis of Celastraceae yet completed with respect to both character and taxon sampling, and include representatives of five new endemic genera. Fifty-one new accessions, together with 328(More)