Learn More
Transcription by RNA polymerase (RNAP) in bacteria requires specific promoter recognition by σ factors. The major variant σ factor (σ(54)) initially forms a transcriptionally silent complex requiring specialized adenosine triphosphate-dependent activators for initiation. Our crystal structure of the 450-kilodalton RNAP-σ(54) holoenzyme at 3.8 angstroms(More)
Gene transcription is carried out by RNA polymerases (RNAPs). For transcription to occur, the closed promoter complex (RPc), where DNA is double stranded, must isomerize into an open promoter complex (RPo), where the DNA is melted out into a transcription bubble and the single-stranded template DNA is delivered to the RNAP active site. Using a bacterial(More)
DNA repair complexes play crucial roles in maintaining genome integrity, which is essential for the survival of an organism. The understanding of their modes of action is often obscure due to limited structural knowledge. Structural characterizations of these complexes are often challenging due to a poor protein production yield, a conformational(More)
Transcription initiation is highly regulated in bacterial cells, allowing adaptive gene regulation in response to environment cues. One class of promoter specificity factor called sigma54 enables such adaptive gene expression through its ability to lock the RNA polymerase down into a state unable to melt out promoter DNA for transcription initiation.(More)
  • 1