Robert Giegerich

Learn More
MicroRNAs (miRNAs) are short RNAs that post-transcriptionally regulate the expression of target genes by binding to the target mRNAs. Although a large number of animal miRNAs has been defined, only a few targets are known. In contrast to plant miRNAs, which usually bind nearly perfectly to their targets, animal miRNAs bind less tightly, with a few(More)
The repetitive structure of genomic DNA holds many secrets to be discovered. A systematic study of repetitive DNA on a genomic or inter-genomic scale requires extensive algorithmic support. The REPuter program described herein was designed to serve as a fundamental tool in such studies. Efficient and complete detection of various types of repeats is(More)
We introduce RNAshapes, a new software package that integrates three RNA analysis tools based on the abstract shapes approach: the analysis of shape representatives, the calculation of shape probabilities and the consensus shapes approach. This new package is completely reimplemented in C and outruns the original implementations significantly in runtime and(More)
An increasing number of researchers have released novel RNA structure analysis and prediction algorithms for comparative approaches to structure prediction. Yet, independent benchmarking of these algorithms is rarely performed as is now common practice for protein-folding, gene-finding and multiple-sequence-alignment algorithms. Here we evaluate a number of(More)
The flood of sequence data resulting from the large number of current genome projects has increased the need for a flexible, open source genome annotation system, which so far has not existed. To account for the individual needs of different projects, such a system should be modular and easily extensible. We present a genome annotation system for prokaryote(More)
We present a systematic treatment of alignment distance and local similarity algorithms on trees and forests. We build upon the tree alignment algorithm for ordered trees given by Jiang et. al (1995) and extend it to calculate local forest alignments, which is essential for finding local similar regions in RNA secondary structures. The time complexity of(More)
The general problem of RNA secondary structure prediction under the widely used thermodynamic model is known to be NP-complete when the structures considered include arbitrary pseudoknots. For restricted classes of pseudoknots, several polynomial time algorithms have been designed, where the O(n6)time and O(n4) space algorithm by Rivas and Eddy is currently(More)
We present an efficient implementation of a write-only topdown construction for suffix trees. Our implementation is based on a new, space-efficient representation of suffix trees which requires only 12 bytes per input character in the worst case, and 8.5 bytes per input character on average for a collection of files of different type. We show how to(More)
We review the linear-time suffix tree constructions by Weiner, McCreight, and Ukkonen. We use the terminology of the most recent algorithm, Ukkonen's on-line construction, to explain its historic predecessors. This reveals relationships much closer than one would expect, since the three algorithms are based on rather different intuitive ideas. Moreover, it(More)
Stochastic context free grammars are a formalism which plays a prominent role in RNA secondary structure analysis. This chapter provides the theoretical background on stochastic context free grammars. We recall the general definitions and study the basic properties, virtues, and shortcomings of stochastic context free grammars. We then introduce two ways in(More)