Learn More
Sum-product networks (SPNs) are a new class of deep probabilistic models. SPNs can have unbounded treewidth but inference in them is always tractable. An SPN is either a univariate distribution, a product of SPNs over disjoint variables, or a weighted sum of SPNs over the same variables. We propose the first algorithm for learning the structure of SPNs that(More)
One of the central themes in Sum-Product networks (SPNs) is the interpretation of sum nodes as marginalized latent variables (LVs). This interpretation yields an increased syntactic or semantic structure, allows the application of the EM algorithm and to efficiently perform MPE inference. In literature, the LV interpretation was justified by explicitly(More)
The chief difficulty in object recognition is that objects’ classes are obscured by a large number of extraneous sources of variability, such as pose and part deformation. These sources of variation can be represented by symmetry groups, sets of composable transformations that preserve object identity. Convolutional neural networks (convnets) achieve a(More)
Convolutional neural networks (convnets) have achieved impressive results on recent computer vision benchmarks. While they benefit from multiple layers that encode nonlinear decision boundaries and a degree of translation invariance, training convnets is a lengthy procedure fraught with local optima. Alternatively, a kernel method that incorporates the(More)
  • 1