Learn More
Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human(More)
Dorsoventral axis formation in the Drosophila embryo is established by a signal transduction pathway that comprises the products of at least 12 maternal genes. Two of these genes, dorsal and cactus, show homology to the mammalian transcription factor NF-kappa B and its inhibitor I kappa B, respectively. As in the case for I kappa B and NF-kappa B, Cactus(More)
Germ cells preserve an individual's genetic information and transmit it to the next generation. Early in development germ cells are set aside and undergo a specialized developmental programme, a hallmark of which is the migration from their site of origin to the future gonad. In Drosophila, several factors have been identified that control germ-cell(More)
The Tübingen large-scale zebrafish genetic screen completed in 1996 identified a set of five genes required for orderly somite segmentation. Four of them have been molecularly identified and three were found to code for components of the Notch pathway, which are required for the coordinated oscillation of gene expression, known as the segmentation clock, in(More)
Retinal ganglion cell (RGC) axons are topographically ordered in the optic tract according to their retinal origin. In zebrafish dackel (dak) and boxer (box) mutants, some dorsal RGC axons missort in the optic tract but innervate the tectum topographically. Molecular cloning reveals that dak and box encode ext2 and extl3, glycosyltransferases implicated in(More)
Metamodeling is playing an increasingly important role in object-oriented software engineering. However, most approaches use metamodels in a very pragmatic way and important conceptual questions are left open. In this paper, an object-oriented metamodeling methodology based on a formal metalanguage is introduced. The methodology allows for the description(More)
shocked (sho) is a zebrafish mutation that causes motor deficits attributable to CNS defects during the first2dof development. Mutant embryos display reduced spontaneous coiling of the trunk, diminished escape responses when touched, and an absence of swimming. A missense mutation in the slc6a9 gene that encodes a glycine transporter (GlyT1) was identified(More)
In this study, we elucidate the roles of the winged-helix transcription factor Foxa2 in ventral CNS development in zebrafish. Through cloning of monorail (mol), which we find encodes the transcription factor Foxa2, and phenotypic analysis of mol-/- embryos, we show that floorplate is induced in the absence of Foxa2 function but fails to further(More)
A number of studies have suggested that retinoic acid (RA) is an important signal for patterning the hindbrain, the branchial arches and the limb bud. Retinoic acid is thought to act on the posterior hindbrain and the limb buds at somitogenesis stages in chick and mouse embryos. Here we report a much earlier requirement for RA signalling during(More)
N-cadherin (Ncad) is a classical cadherin that is implicated in several aspects of vertebrate embryonic development, including somitogenesis, heart morphogenesis, neural tube formation and establishment of left-right asymmetry. However, genetic in vivo analyses of its role during neural development have been rather limited. We report the isolation and(More)