Learn More
Caveolin-1 is the principal structural protein of caveolae membranes in fibroblasts and endothelia. Recently, we have shown that the human CAV-1 gene is localized to a suspected tumor suppressor locus, and mutations in Cav-1 have been implicated in human cancer. Here, we created a caveolin-1 null (CAV-1 -/-) mouse model, using standard homologous(More)
Velo-cardio-facial syndrome (VCFS)/DiGeorge syndrome (DGS) is a human disorder characterized by a number of phenotypic features including cardiovascular defects. Most VCFS/DGS patients are hemizygous for a 1.5-3.0 Mb region of 22q11. To investigate the etiology of this disorder, we used a cre-loxP strategy to generate mice that are hemizygous for a 1.5 Mb(More)
The first full publications on the biological effects of the diphosphonates, later renamed bisphosphonates, appeared in 1969, so it is timely after 40years to review the history of their development and their impact on clinical medicine. This special issue of BONE contains a series of review articles covering the basic science and clinical aspects of these(More)
Tuberculosis remains a leading cause of death worldwide, despite the availability of effective chemotherapy and a vaccine. Bacillus Calmette-Guérin (BCG), the tuberculosis vaccine, is an attenuated mutant of Mycobacterium bovis that was isolated after serial subcultures, yet the functional basis for this attenuation has never been elucidated. A single(More)
In human breast carcinomas, overexpression of the macrophage colony-stimulating factor (CSF-1) and its receptor (CSF-1R) correlates with poor prognosis. To establish if there is a causal relationship between CSF-1 and breast cancer progression, we crossed a transgenic mouse susceptible to mammary cancer with mice containing a recessive null mutation in the(More)
Nitrogen-containing bisphosphonates were shown to cause macrophage apoptosis by inhibiting enzymes in the biosynthetic pathway leading from mevalonate to cholesterol. This study suggests that, in osteoclasts, geranylgeranyl diphosphate, the substrate for prenylation of most GTP binding proteins, is likely to be the crucial intermediate affected by these(More)
The bisphosphonates (BPs) are well established as the treatments of choice for disorders of excessive bone resorption, including Paget's disease of bone, myeloma and bone metastases, and osteoporosis. There is considerable new knowledge about how BPs work. Their classical pharmacological effects appear to result from two key properties: their affinity for(More)
Exonuclease 1 (Exo1) is a 5'-3' exonuclease that interacts with MutS and MutL homologs and has been implicated in the excision step of DNA mismatch repair. To investigate the role of Exo1 in mammalian mismatch repair and assess its importance for tumorigenesis and meiosis, we generated an Exo1 mutant mouse line. Analysis of Exo1(-/-) cells for mismatch(More)
Peroxisome proliferator-activated receptor (PPAR) represents a ligand-dependent nuclear receptor family that regulates multiple metabolic processes associated with fatty acid beta-oxidation, glucose utilization, and cholesterol transport. These and other receptor-mediated actions pertain to their role in hypolipidemic and antidiabetic therapies and as(More)