Robert G. Nagele

Learn More
Amyloid beta(1-42), a major component of amyloid plaques, binds with exceptionally high affinity to the alpha 7 nicotinic acetylcholine receptor and accumulates intracellularly in neurons of Alzheimer's disease brains. In this study, we investigated the possibility that this binding plays a key role in facilitating intraneuronal accumulation of amyloid(More)
beta-Amyloid(1-42) (A beta 42), a major component of amyloid plaques, accumulates within pyramidal neurons in the brains of individuals with Alzheimer's disease (AD) and Down syndrome. In brain areas exhibiting AD pathology, A beta 42-immunopositive material is observed in astrocytes. In the present study, single- and double-label immunohistochemistry were(More)
AIMS Amyloid has recently been shown to accumulate intracellularly in the brains of patients with Alzheimer's disease (AD), yet amyloid plaques are generally thought to arise from gradual extracellular amyloid deposition. We have investigated the possibility of a link between these two apparently conflicting observations. METHODS AND RESULTS(More)
This report defines the identity of a calcium-regulated membrane guanylate cyclase transduction system in the cilia of olfactory sensory neurons, which is the site of odorant transduction. The membrane fraction of the neuroepithelial layer of the rat exhibited Ca(2+)-dependent guanylate cyclase activity, which was eliminated by the addition of EGTA. This(More)
In this paper, we report state-of-the-art high frequency performance of GaN-based high electron mobility transistors (HEMTs) and Schottky diodes achieved through innovative device scaling technologies such as vertically scaled enhancement and depletion mode (E/D mode) AlN/GaN/AlGaN double-heterojunction HEMT epitaxial structures, a low-resistance(More)
Amyloid plaques appear early during Alzheimer's disease (AD), and their development is intimately linked to activated astrocytes and microglia. Astrocytes are capable of accumulating substantial amounts of neuron-derived, amyloid beta(1-42) (Abeta42)-positive material and other neuron-specific proteins as a consequence of their debris-clearing role in(More)
The relative locations of several chromosomes within wheel-shaped prometaphase chromosome rosettes of human fibroblasts and HeLa cells were determined with fluorescence hybridization. Homologs were consistently positioned on opposite sides of the rosette, which suggests that chromosomes are separated into two haploid sets, each derived from one parent. The(More)
In the present study, the contribution of nitric oxide (NO), superoxide, and peroxynitrite to the inflammatory response induced by myocardial ischemia-reperfusion (MI/R) was investigated. Male Sprague-Dawley rats were anesthetized, and the left main coronary artery was ligated for 20 min and reperfused for 5 h. MI/R induced severe arrhythmias, indicated by(More)
The mechanism by which the individual odor signals are translated into the perception of smell in the brain is unknown. The signal processing occurs in the olfactory system which has three major components: olfactory neuroepithelium, olfactory bulb, and olfactory cortex. The neuroepithelial layer is composed of ciliated sensory neurons interspersed among(More)
Recent evidence indicates the presence of a novel alpha(2D/A)-adrenergic receptor (alpha(2D/A)-AR) linked membrane guanylate cyclase signal transduction system in the pineal gland. This system operates via a Ca(2+)-driven rod outer segment membrane guanylate cyclase (ROS-GC). In the present study, this transduction system has been characterized via(More)