Learn More
Skeletal muscle is one of a several adult post-mitotic tissues that retain the capacity to regenerate. This relies on a population of quiescent precursors, termed satellite cells. Here we describe two novel markers of quiescent satellite cells: CD34, an established marker of hematopoietic stem cells, and Myf5, the earliest marker of myogenic commitment.(More)
Newly formed somites or unsegmented paraxial mesoderm (UPM) have been cultured either in isolation or with adjacent structures to investigate the influence of these tissues on myogenic differentiation in mammals. The extent of differentiation was easily and accurately quantified by counting the number of beta-galactosidase-positive cells, since mesodermal(More)
Development of the arterial pole of the heart is a critical step in cardiogenesis, yet its embryological origin remains obscure. We have analyzed a transgenic mouse line in which beta-galactosidase activity is observed in the embryonic right ventricle and outflow tract of the heart and in contiguous splanchnic and pharyngeal mesoderm. The nlacZ transgene(More)
Genetic regulatory networks governing skeletal myogenesis in the body are well understood, yet their hierarchical relationships in the head remain unresolved. We show that either Myf5 or Mrf4 is necessary for initiating extraocular myogenesis. Whereas Mrf4 is dispensable for pharyngeal muscle progenitor fate, Tbx1 and Myf5 act synergistically for governing(More)
Activation of myogenesis in newly formed somites is dependent upon signals derived from neighboring tissues, namely axial structures (neural tube and notochord) and dorsal ectoderm. In explants of paraxial mesoderm from mouse embryos, axial structures preferentially activate myogenesis through a Myf5-dependent pathway and dorsal ectoderm preferentially(More)
Formation and remodeling of the pharyngeal arches play central roles in craniofacial development. TBX1, encoding a T-box-containing transcription factor, is the major candidate gene for del22q11.2 (DiGeorge or velo-cardio-facial) syndrome, characterized by craniofacial defects, thymic hypoplasia, cardiovascular anomalies, velopharyngeal insufficiency and(More)
Key molecules which regulate the formation of the heart have been identified; however, the mechanism of cardiac morphogenesis remains poorly understood at the cellular level. We have adopted a genetic approach, which permits retrospective clonal analysis of myocardial cells in the mouse embryo, based on the targeting of an nlaacZ reporter to the(More)
When and how cells form and pattern the myocardium is a central issue for heart morphogenesis. Many genes are differentially expressed and function in subsets of myocardial cells. However, the lineage relationships between these cells remain poorly understood. To examine this, we have adopted a retrospective approach in the mouse embryo, based on the use of(More)
Ten years ago, a population of cardiac progenitor cells was identified in pharyngeal mesoderm that gives rise to a major part of the amniote heart. These multipotent progenitor cells, termed the second heart field (SHF), contribute progressively to the poles of the elongating heart tube during looping morphogenesis, giving rise to myocardium, smooth muscle,(More)
Human minisatellite probes cross-hybridize to mouse DNA and detect multiple variable loci. The resulting DNA "fingerprints" vary substantially between inbred strains but relatively little within an inbred strain. By studying the segregation of variable DNA fragments in BXD recombinant inbred strains of mice, at least 13 hypervariable loci were defined, 8 of(More)