Robert F. Salamonsen

Learn More
A lumped parameter model of human cardiovascular-implantable rotary blood pump (iRBP) interaction has been developed based on experimental data recorded in two healthy pigs with the iRBP in situ. The model includes descriptions of the left and right heart, direct ventricular interaction through the septum and pericardium, the systemic and pulmonary(More)
From the moment of creation to the moment of death, the heart works tirelessly to circulate blood, being a critical organ to sustain life. As a non-stopping pumping machine, it operates continuously to pump blood through our bodies to supply all cells with oxygen and necessary nutrients. When the heart fails, the supplement of blood to the body's organs to(More)
An integral component in the development of a control strategy for implantable rotary blood pumps is the task of reliably detecting the occurrence of left ventricular collapse due to overpumping of the native heart. Using the noninvasive pump feedback signal of impeller speed, an approach to distinguish between overpumping (or ventricular collapse) and the(More)
A heart-pump interaction model has been developed based on animal experimental measurements obtained with a rotary blood pump in situ. Five canine experiments were performed to investigate the interaction between the cardiovascular system and the implantable rotary blood pump over a wide range of operating conditions, including variations in cardiac(More)
In this study, we evaluate a preload-based Starling-like controller for implantable rotary blood pumps (IRBPs) using left ventricular end-diastolic pressure (PLVED) as the feedback variable. Simulations are conducted using a validated mathematical model. The controller emulates the response of the natural left ventricle (LV) to changes in PLVED. We report(More)
As a left ventricular assist device is designed to pump against the systemic vascular resistance (SVR), pulmonary congestion may occur when using such device for right ventricular support. The present study evaluates the efficacy of using a fixed right outflow banding in patients receiving biventricular assist device support under various circulatory(More)
  • 1