Robert F. Padera

Learn More
Genetic alterations in the kinase domain of the epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) patients are associated with sensitivity to treatment with small molecule tyrosine kinase inhibitors. Although first-generation reversible, ATP-competitive inhibitors showed encouraging clinical responses in lung adenocarcinoma(More)
Germline mutation in serine/threonine kinase 11 (STK11, also called LKB1) results in Peutz-Jeghers syndrome, characterized by intestinal hamartomas and increased incidence of epithelial cancers. Although uncommon in most sporadic cancers, inactivating somatic mutations of LKB1 have been reported in primary human lung adenocarcinomas and derivative cell(More)
Somatic mutations that activate phosphoinositide 3-kinase (PI3K) have been identified in the p110-alpha catalytic subunit (encoded by PIK3CA). They are most frequently observed in two hotspots: the helical domain (E545K and E542K) and the kinase domain (H1047R). Although the p110-alpha mutants are transforming in vitro, their oncogenic potential has not(More)
BACKGROUND The evolution of cell phenotypes and matrix architecture in cardiac valves during fetal maturation and postnatal adaptation through senescence remains unexplored. METHODS AND RESULTS We hypothesized that valvular interstitial (VIC) and endothelial cell (VEC) phenotypes, critical for maintaining valve function, change throughout life in response(More)
The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors in EGFR-mutant non-small-cell lung cancer (NSCLC) is limited by the development of drug-resistance mutations, including the gatekeeper T790M mutation. Strategies targeting EGFR T790M with irreversible inhibitors have had limited success and are associated with toxicity due to(More)
Activating mutations in K-ras are one of the most common genetic alterations in human lung cancer. To dissect the role of K-ras activation in bronchial epithelial cells during lung tumorigenesis, we created a model of lung adenocarcinoma by generating a conditional mutant mouse with both Clara cell secretory protein (CC10)-Cre recombinase and the(More)
Mutations in the BRAF and KRAS genes occur in approximately 1% to 2% and 20% to 30% of non-small-cell lung cancer patients, respectively, suggesting that the mitogen-activated protein kinase (MAPK) pathway is preferentially activated in lung cancers. Here, we show that lung-specific expression of the BRAF V600E mutant induces the activation of extracellular(More)
Osteochondral repair involves the regeneration of articular cartilage and underlying bone, and the development of a well-defined tissue-to-tissue interface. We investigated tissue engineering of three-dimensional cartilage/bone composites based on biodegradable polymer scaffolds, chondrogenic and osteogenic cells. Cartilage constructs were created by(More)
To understand the role of human epidermal growth factor receptor (hEGFR) kinase domain mutations in lung tumorigenesis and response to EGFR-targeted therapies, we generated bitransgenic mice with inducible expression in type II pneumocytes of two common hEGFR mutants seen in human lung cancer. Both bitransgenic lines developed lung adenocarcinoma after(More)
The structure and function of cartilaginous constructs, engineered in vitro using bovine articular chondrocytes, biodegradable scaffolds and bioreactors, can be modulated by the conditions and duration of tissue cultivation. We hypothesized that the integrative properties of engineered cartilage depend on developmental stage of the construct and the(More)