Robert F. Murphy

Learn More
MOTIVATION Assessment of protein subcellular location is crucial to proteomics efforts since localization information provides a context for a protein's sequence, structure, and function. The work described below is the first to address the subcellular localization of proteins in a quantitative, comprehensive manner. RESULTS Images for ten different(More)
Image segmentation is an essential step in many image analysis pipelines and many algorithms have been proposed to solve this problem. However, they are often evaluated subjectively or based on a small number of examples. To fill this gap, we hand-segmented a set of 97 fluorescence microscopy images (a total of 4009 cells) and objectively evaluated some(More)
Detailed knowledge of the subcellular location of each expressed protein is critical to a full understanding of its function. Fluorescence microscopy, in combination with methods for fluorescent tagging, is the most suitable current method for proteome-wide determination of subcellular location. Previous work has shown that neural network classifiers can(More)
The ongoing biotechnology revolution promises a complete understanding of the mechanisms by which cells and tissues carry out their functions. Central to that goal is the determination of the function of each protein that is present in a given cell type, and determining a protein’s location within cells is critical to understanding its function. As large(More)
The effects of bafilomycin, nocodazole, and reduced temperature on recycling and the lysosomal pathway have been investigated in various cultured cell lines and have been shown to vary dependent on the cell type examined. However, the way in which these treatments affect recycling and transport to lysosomes within the same cell line has not been analyzed.(More)
Bafilomycin A1 (baf), a specific inhibitor of vacuolar proton ATPases, is commonly employed to demonstrate the requirement of low endosomal pH for viral uncoating. However, in certain cell types baf also affects the transport of endocytosed material from early to late endocytic compartments. To characterize the endocytic route in HeLa cells that are(More)
Given the importance of subcellular location to protein function, computational simulations of cell behaviors will ultimately require the ability to model the distributions of proteins within organelles and other structures. Toward this end, statistical learning methods have previously been used to build models of sets of two-dimensional microscope images,(More)
The usefulness and efficacy of cisplatin, a chemotherapeutic drug, are limited by its toxicity to normal tissues and organs, including the kidneys. The uptake of cisplatin in renal tubular cells is high, leading to cisplatin accumulation and tubular cell injury and death, culminating in acute renal failure. While extensive investigations have been focused(More)
Introduction To understand the intricate pathways that regulate biological processes at the cellular level, we need to be able to capture data about the subcellular distributions of proteins and how these vary within cell populations. Automated analysis of fluorescence microscope images provides a powerful way of acquiring such information. The high(More)
Few technologies are more widespread in modern biological laboratories than imaging. Recent advances in optical technologies and instrumentation are providing hitherto unimagined capabilities. Almost all these advances have required the development of software to enable the acquisition, management, analysis and visualization of the imaging data. We review(More)