Robert F Gonzalez

Learn More
A method has been developed for isolating alveolar type II cells by digesting lung tissue with elastase and "panning" the resultant cell suspension on plates coated with IgG. This method provides both high yield and purity of type II cells. In 50 experiments with rats, we obtained 35 +/- 11 X 10(6) cells/rat, 89 +/- 4% of which were type II cells (mean +/-(More)
The alveolar surface of the lung is lined by two classes of epithelial cells, type I and type II cells. Type I cells cover more than 97% of the alveolar surface. Although this cell type is felt to be essential for normal gas exchange, neither unique identifying characteristics nor functions have been described for the type I cell. We have produced(More)
Pulmonary alveolar type I cells (TI cell) are very large (approximately 5400 microm(2) in surface area) squamous cells that cover more than 98% of the internal surface area of rodent lungs. In the past, TI cells were believed to serve only passive barrier functions, with no active functional properties in the lung. The fairly recent development of methods(More)
The proinflammatory CXC chemokines GRO, CINC-2alpha, and macrophage inflammatory protein (MIP)-2 are a closely related family of neutrophil chemoattractants. Here, we report that freshly isolated alveolar Type II (TII) cells express these chemokine mRNAs at much higher levels than do freshly isolated Type I cells or alveolar macrophages (AM). TII cells also(More)
Water permeability measured between the airspace and vasculature in intact sheep and mouse lungs is high. More than 95% of the internal surface area of the lung is lined by alveolar epithelial type I cells. The purpose of this study was to test whether osmotic water permeability (Pf) in type I alveolar epithelial cells is high enough to account for the high(More)
We used microarray analysis with Affymetrix rat chips to determine gene expression profiles of freshly isolated rat type I (TI) and TII cells and cultured TII cells. Our goals were 1) to describe molecular phenotypic "fingerprints" of TI and TII cells, 2) to gain insight into possible functional differences between the two cell types through differentially(More)
The pulmonary alveolar epithelium is composed of two distinct types of cells, type I and type II cells, both of which are critical for normal lung function. On the basis of experiments of both nature and in vivo studies, it has been hypothesized that expression of the type I or type II phenotype is influenced by mechanical factors. We have investigated the(More)
Currently there is no recognized biochemical or molecular marker for human parenchymal lung injury analogous to markers for acute myocardial injury. Injury to the alveolar epithelial barrier is of central importance in the pathogenesis of and recovery from acute lung injury. In animal models, an alveolar type I cell-specific protein, RTI(40), has been shown(More)
Alveolar type I (TI) cells are large, squamous cells that cover 95-99% of the internal surface area of the lung. Although TI cells are believed to be terminally differentiated, incapable of either proliferation or phenotypic plasticity, TI cells in vitro both proliferate and express phenotypic markers of other differentiated cell types. Rat TI cells(More)
RTI40 is a 40-42 kDa protein that, within the lung, is specific to the apical plasma membrane of the rat alveolar type I cell. Type I cells cover greater than 95% of the internal surface area of the lung. In this report, we describe some of the physical properties of RTI40, and its purification to homogeneity. By liquid phase isoelectric focusing, the pI of(More)