Learn More
Biological and environmental contrasts between aquatic and terrestrial systems have hindered analyses of community and ecosystem structure across Earth's diverse habitats. Ecological stoichiometry provides an integrative approach for such analyses, as all organisms are composed of the same major elements (C, N, P) whose balance affects production, nutrient(More)
Disparities in nutrient content (nitrogen and phosphorus) between herbivores and their plant resources have lately proven to have major consequences for herbivore success, consumer-driven nutrient cycling, and the fate of primary production in ecosystems. Here we extend these findings by examining patterns of nutrient content between animals at higher(More)
The importance of interspecific competition is a highly controversial and unresolved issue for community ecology in general, and for phytophagous insects in particular. Recent advancements, however, in our understanding of indirect (plant- and enemy-mediated) interactions challenge the historical paradigms of competition. Thus, in the context of this(More)
The structural complexity of habitats has been espoused as an important factor influencing natural-enemy abundance and food-web dynamics in invertebrate-based communities, but a rigorous synthesis of published studies has not heretofore been conducted. We performed a meta-analytical synthesis of the density response of natural enemies (invertebrate(More)
The ability of predators to elicit a trophic cascade with positive impacts on primary productivity may depend on the complexity of the habitat where the players interact. In structurally-simple habitats, trophic interactions among predators, such as intraguild predation, can diminish the cascading effects of a predator community on herbivore suppression and(More)
This review reevaluates the importance of interspecific competition in the population biology of phytophagous insects and assesses factors that mediate competition. An examination of 193 pair-wise species interactions, repre­ senting all major feeding guilds, provided information on the occurrence, frequency, symmetry, consequences, and mechanisms of(More)
Omnivory is a frequent feeding strategy in terrestrial arthropods, occurring across a diversity of taxa occupying a wide array of habitats. Because omnivory has important consequences for broad areas of theoretical and applied ecology, it is essential to understand those factors that favor its occurrence. Here we address the limiting role of nitrogen in(More)
Literature-compiled data sets demonstrate wide interspecific variation in nitrogen content among terrestrial arthropods and raise the possibility of nitrogen (N) limitation for predatory species. It remains unclear, however, whether the same disparities between N supply and demand that appear in literature compilations also exist in particular ecological(More)
Anthropogenic nutrient inputs into native ecosystems cause fluctuations in resources that normally limit plant growth, which has important consequences for associated food webs. Such inputs from agricultural and urban habitats into nearby natural systems are increasing globally and can be highly variable, spanning the range from sporadic to continuous.(More)