Robert E. Schapire

Learn More
In the first part of the paper we consider the problem of dynamically apportioning resources among a set of options in a worst-case on-line framework. The model we study can be interpreted as a broad, abstract extension of the well-studied on-line prediction model to a general decision-theoretic setting. We show that the multiplicative weightupdate(More)
In an earlier paper, we introduced a new “boosting” algorithm called AdaBoost which, theoretically, can be used to significantly reduce the error of any learning algorithm that consistently generates classifiers whose performance is a little better than random guessing. We also introduced the related notion of a “pseudo-loss” which is a method for forcing a(More)
Jane Elith*, Catherine H. Graham*, Robert P. Anderson, Miroslav Dudı́k, Simon Ferrier, Antoine Guisan, Robert J. Hijmans, Falk Huettmann, John R. Leathwick, Anthony Lehmann, Jin Li, Lucia G. Lohmann, Bette A. Loiselle, Glenn Manion, Craig Moritz, Miguel Nakamura, Yoshinori Nakazawa, Jacob McC. Overton, A. Townsend Peterson, Steven J. Phillips, Karen(More)
This paper addresses the problem of improving the accuracy of an hypothesis output by a learning algorithm in the distribution-free (PAC) learning model. A concept class is learnable (or strongly learnable) if, given access to a source of examples of the unknown concept, the learner with high probability is able to output an hypothesis that is correct on(More)
Boosting is a general method for improving the accuracy of any given learning algorithm. This short overview paper introduces the boosting algorithm AdaBoost, and explains the underlying theory of boosting, including an explanation of why boosting often does not suffer from overfitting as well as boosting’s relationship to support-vector machines. Some(More)
In the multiarmed bandit problem, a gambler must decide which arm of K nonidentical slot machines to play in a sequence of trials so as to maximize his reward. This classical problem has received much attention because of the simple model it provides of the trade-off between exploration (trying out each arm to find the best one) and exploitation (playing(More)
Personalized web services strive to adapt their services (advertisements, news articles, etc.) to individual users by making use of both content and user information. Despite a few recent advances, this problem remains challenging for at least two reasons. First, web service is featured with dynamically changing pools of content, rendering traditional(More)
This work focuses on algorithms which learn from examples to perform multiclass text and speech categorization tasks. Our approach is based on a new and improved family of boosting algorithms. We describe in detail an implementation, called BoosTexter, of the new boosting algorithms for text categorization tasks. We present results comparing the performance(More)
One of the surprising recurring phenomena observed in experiments with boosting is that the test error of the generated classifier usually does not increase as its size becomes very large, and often is observed to decrease even after the training error reaches zero. In this paper, we show that this phenomenon is related to the distribution of margins of the(More)
We study the problem of modeling species geographic distributions, a critical problem in conservation biology. We propose the use of maximum-entropy techniques for this problem, specifically, sequential-update algorithms that can handle a very large number of features. We describe experiments comparing maxent with a standard distribution-modeling tool,(More)