Learn More
We investigated the expression of metabotropic glutamate receptors (mGluR) in the prefrontal cortex (PFC) and striatum in schizophrenia. mGluRs modulate the release and reuptake of synaptic glutamate and mediate some molecular correlates of neuroplasticity, including long-term potentiation. The mGluRs are expressed widely in the PFC and striatum, regions(More)
Glutamate cycling is critically important for neurotransmission, and may be altered in schizophrenia. The excitatory amino acid transporters (EAATs) facilitate the reuptake of glutamate from the synaptic cleft and have a key role in glutamate cycling. We hypothesized that expression of the EAATs and the EAAT regulating proteins ARHGEF11, JWA, G-protein(More)
OBJECTIVES Schizophrenia is associated with dysfunction of glutamatergic neurotransmission, and several studies have suggested glutamatergic abnormalities in bipolar disorder. Recent data suggest involvement of the NMDA receptor signaling complex, which includes NMDA receptor subunits as well as associated intracellular interacting proteins critical for(More)
Numerous molecules enable the handling of glutamate that is destined for neurotransmitter release, including transporters, receptors and glutamatergic enzymes. Previous work in our lab has shown altered levels of transcript expression of excitatory amino acid transporters and a vesicular glutamate transporter in the thalamus in schizophrenia. These changes(More)
BACKGROUND Altered glutamate transmission has been found in the medial temporal lobe in severe psychiatric illnesses, including major depressive disorder (MDD) and bipolar disorder (BD). The vesicular glutamate transporters (VGLUTs) have a pivotal role in presynaptic release of glutamate into the synaptic cleft. We investigated this presynaptic marker in(More)
Several recent studies have found changes in the expression of genes functionally related to myelination and oligodendrocyte homeostasis in schizophrenia. These studies utilized microarrays and quantitative PCR (QPCR), methodologies which do not permit direct, unamplified examination of mRNA expression. In addition, these studies generally only examined(More)
BACKGROUND Current pharmacological treatments for schizophrenia target G protein-coupled receptors (GPCRs), including dopamine receptors. Ligand-bound GPCRs are regulated by a family of G protein-coupled receptor kinases (GRKs), members of which uncouple the receptor from heterotrimeric G proteins, desensitize the receptor, and induce receptor(More)
Pharmacological and anatomical evidence suggests that abnormal glutamate neurotransmission may be associated with the pathophysiology of schizophrenia and mood disorders. Medial temporal lobe structural alterations have been implicated in schizophrenia and to a lesser extent in mood disorders. To comprehensively examine the ionotropic glutamate receptors in(More)
Altered expression of structural and functional molecules expressed by astrocytes may play a role in the pathophysiology of schizophrenia. We investigated the hypothesis that the astrocytic enzyme glutamine synthetase, involved in maintaining the glutamate-glutamine cycle, and the cytoskeletal molecule glial fibrillary acidic protein (GFAP) are abnormally(More)