Learn More
Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Each copy of any part of a JSTOR transmission must contain the same copyright notice that(More)
Markov chain Monte Carlo (MCMC) methods make possible the use of exible Bayesian models that would otherwise be computationally infeasible. In recent years, a great variety of such applications have been described in the literature. Applied statisticians who are new to these methods may have several questions and concerns, however: How much eeort and(More)
Measuring agreement between a statistical model and a spike train data series, that is, evaluating goodness of fit, is crucial for establishing the model's validity prior to using it to make inferences about a particular neural system. Assessing goodness-of-fit is a challenging problem for point process neural spike train models, especially for(More)
3 Spike signals from neurons in the human brain may be decoded to control 4 robotic hands, arms and other prosthetic devices. ABSTRACT | Over the past few decades, developments in 7 technology have significantly improved the ability to measure 8 activity in the brain. This has spurred a great deal of research 9 into brain function and its relation to(More)
Multiple electrodes are now a standard tool in neuroscience research that make it possible to study the simultaneous activity of several neurons in a given brain region or across different regions. The data from multi-electrode studies present important analysis challenges that must be resolved for optimal use of these neurophysiological measurements to(More)
Analysis of data from neurophysiological investigations can be challenging. Particularly when experiments involve dynamics of neuronal response, scientific inference can become subtle and some statistical methods may make much more efficient use of the data than others. This article reviews well-established statistical principles, which provide useful(More)
Efforts to study the neural correlates of learning are hampered by the size of the network in which learning occurs. To understand the importance of learning-related changes in a network of neurons, it is necessary to understand how the network acts as a whole to generate behavior. Here we introduce a paradigm in which the output of a cortical network can(More)
The activity of dozens of simultaneously recorded neurons can be used to control the movement of a robotic arm or a cursor on a computer screen. This motor neural prosthetic technology has spurred an increased interest in the algorithms by which motor intention can be inferred. The simplest of these algorithms is the population vector algorithm (PVA), where(More)
The purpose of smoothing (filtering) neuronal data is to improve the estimation of the instantaneous firing rate. In some applications, scientific interest centres on functions of the instantaneous firing rate, such as the time at which the maximal firing rate occurs or the rate of increase of firing rate over some experimentally relevant period. In others,(More)