Robert D. Leverette

Learn More
Essential elements for intronic U14 processing have been analyzed by microinjecting various mutant hsc70/Ul4 pre-mRNA precursors into Xenopus oocyte nuclei. Initial truncation experiments revealed that elements sufficient for U14 processing are located within the mature snoRNA sequence itself. Subsequent deletions within the U14 coding region demonstrated(More)
U14 snRNA is a small nucleolar RNA species essential for eukaryotic pre-rRNA processing. We have previously shown that the mouse U14 snRNA genes are positioned within introns 5, 6, and 8 on the coding strand of the constitutively expressed cognate hsc70 heat shock gene. This genomic organization suggested the possibility that U14 snRNAs are transcribed as(More)
The use of electronic cigarettes (e-cigs) continues to increase worldwide in parallel with accumulating information on their potential toxicity and safety. In this study, an in vitro battery of established assays was used to examine the cytotoxicity, mutagenicity, genotoxicity and inflammatory responses of certain commercial e-cigs and compared to tobacco(More)
U14 is a small nucleolar RNA required for the processing of eukaryotic rRNA precursors. The U14 genes of mouse as well as rat, hamster, human, Xenopus and trout are encoded within introns of the constitutively expressed 70-kDa-cognate-heat-shock protein gene (hsc70). We demonstrate here that U14.6 and U14.8 snRNAs, in addition to the previously(More)
G(alpha q), a member of the Gq family of heterotrimeric G proteins, transduces signals from several G protein-coupled receptors that stimulate membrane phosphoinositide hydrolysis. In order to further define the role of G(alpha q) in the function of G protein-coupled receptors, we have cloned the cDNA encoding human G(alpha q) from a prostate cDNA library.(More)
  • 1