Learn More
Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which we hope will encourage more systematic research on the(More)
  • James A Estes, John Terborgh, Justin S Brashares, Mary E Power, Joel Berger, William J Bond +18 others
  • 2011
Until recently, large apex consumers were ubiquitous across the globe and had been for millions of years. The loss of these animals may be humankind's most pervasive influence on nature. Although such losses are widely viewed as an ethical and aesthetic problem, recent research reveals extensive cascading effects of their disappearance in marine,(More)
Current unprecedented declines in biodiversity reduce the ability of ecological communities to provide many fundamental ecosystem services. Here we evaluate evidence that reduced biodiversity affects the transmission of infectious diseases of humans, other animals and plants. In principle, loss of biodiversity could either increase or decrease disease(More)
  • Robert D Holt, Andrew P Dobson, Michael Begon, Roger G Bowers, Eric M Schauber
  • 2003
Many pathogens and parasites attack multiple host species, so their ability to invade a host community can depend on host community composition. We present a graphical isocline framework for studying disease establishment in systems with two host species, based on treating host species as resources. The isocline approach provides a natural generalization to(More)
We study the consequences of asymmetric dispersal rates (e.g., due to wind or current) for adaptive evolution in a system of two habitat patches. Asymmetric dispersal rates can lead to overcrowding of the "downstream" habitat, resulting in a source-sink population structure in the absence of intrinsic quality differences between habitats or can even cause(More)
In spatially heterogeneous landscapes, some habitats may be persistent sources, providing immigrants to sustain populations in unfavorable sink habitats (where extinction is inevitable without immigration). Recent theoretical and empirical studies of source-sink systems demonstrate that temporally variable local growth rates in sinks can substantially(More)
We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest's edge, subject to the degrading effects of fragmentation. A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 years demonstrates that habitat fragmentation reduces biodiversity by 13 to 75%(More)
Population persistence in a new and stressful environment can be influenced by the plastic phenotypic responses of individuals to this environment, and by the genetic evolution of plasticity itself. This process has recently been investigated theoretically, but testing the quantitative predictions in the wild is challenging because (i) there are usually not(More)
Ecological communities are typically open to the immigration and emigration of individuals, and also variable through time. In this paper we argue that interesting and potentially important effects arise when one splices together spatial fluxes and temporal variability. The particular system we examine is a sink habitat, where a species faces deterministic(More)